

Big​ ​Data​ ​Infrastructure
Martin​ ​Neumann,​​ ​​Ian​ ​Marsh,​ ​Bjorn​ ​Bjurling,​ ​Ahmad​ ​al-Shishtawy

1​ ​Scope,​ ​goal​ ​and​ ​audience

This report’s aim is to give an overview of the technology components currently being
used​ ​in​ ​big​ ​data​ ​environments​ ​as​ ​of​ ​late-2017.

The focus is on ​open source based products that have company or foundation support.
Within the big data processing platforms, the Apache foundation is the one most
synonymous supporting free development, support, and hosting of solutions. The
reason for restriction within this report is that open source-based solutions have a
strong​ ​presence​ ​on​ ​the​ ​market,​ ​and​ ​many​ ​commercial​ ​solutions​ ​are​ ​based​ ​on​ ​them.

The report provides an overview of the technologies used as well as the general
computational models they implement. An important aspect of the technology, is we
differentiate where possible between batch and stream processing, where the former is
typically​ ​file​ ​by​ ​file,​ ​and​ ​the​ ​latter​ ​is​ ​record​ ​by​ ​record,​ ​omitting​ ​storage​ ​where​ ​possible.

The audience of this document is the technical person, but without specific knowledge
in distributed systems or machine learning. To maintain a readable report length, we
have kept each paragraph “bite-sized” to keep details to a minimum, but still
informative. Our goal is to provide the reader with the necessary background in order to
read the ever-growing volume of literature, courses and consultancy options available to
companies considering investing in big data practices. An annotated reference list is
given at the end of this document, which should be used for further information on most
topics​ ​within​ ​these​ ​30​ ​pages.

1

2​ ​Contents

1​ ​Scope,​ ​goal​ ​and​ ​audience 1

2​ ​Contents 2

3​ ​Big​ ​data​ ​background 3

4​ ​A​ ​typical​ ​data​ ​processing​ ​pipeline 5

5​ ​Technologies 7
5.1​ ​Server​ ​technologies 8
5.2​ ​Data​ ​storage 10

5.2.1​ ​Batch​ ​storage​ ​:​ ​The​ ​HDFS​ ​file​ ​system 10
5.2.2​ ​Stream​ ​‘storage’​ ​:​ ​Kafka 11

5.3​ ​Processing​ ​frameworks 14
5.3.1​ ​Batch​ ​processing 14
5.3.2​ ​Stream​ ​processing 14

5.4​ ​Database​ ​implementation 14

6​ ​Data​ ​analytics 15
6.1​ ​Exploratory​ ​data​ ​analysis 15
6.2​ ​Information​ ​design 15
6.3​ ​Descriptive​ ​statistics 16
6.4​ ​Inferential​ ​statistics 16
6.5​ ​Visualisation 16
6.6​ ​Deep​ ​learning 17

7​ ​BADA​ ​use​ ​cases 17
7.1​ ​Hazard​ ​warning 17
7.2​ ​Traffic​ ​safety​ ​use​ ​case 18
7.3​ ​Traffic​ ​flow​ ​example​ ​with​ ​queue​ ​buildup 20
7.4​ ​Future​ ​use​ ​cases 21

7.4.1​ ​Self-regulating​ ​traffic​ ​flow 21
7.4.2​ ​Extension​ ​of​ ​the​ ​hazard​ ​warning​ ​light​ ​scenario 21
7.4.3​ ​Mining​ ​11​ ​years​ ​of​ ​flow​ ​data 21

8​ ​A​ ​brief​ ​technology​ ​chronology 22
8.1​ ​Hadoop 22
8.2​ ​Spark 22
8.3​ ​HopsWorks 23
8.4​ ​Flink 24
8.5​ ​Big​ ​data​ ​processing​ ​architecture 24

9​ ​Summary 25

10​ ​Annotated​ ​reading​ ​list 26

2

3​ ​Big​ ​data​ ​background

Figure​ ​1:​ ​Big​ ​data​ ​processing

In order to understand the general ideas of big data within the workplace, IBM initially
defined four words using the letter “V”. With the addition of a fifth, “Value”, the
terminology became a standard manner in which to start describing big data practices.
In​ ​the​ ​next​ ​paragraphs​ ​we​ ​explain​ ​what​ ​each​ ​“V”​ ​stands​ ​for,​ ​see​ ​figure​ ​2​ ​too.

I. Volume refers to the vast amounts of data that is generated. 90% of the world’s
data was created in the last 2 years. This could either be in form of large files
such as HD-Video of large amounts of small files such as transaction logs. The
data commonly is too big to fit into a single machine so storage and access
become challenging. Distributed job processing such as Hadoop or Spark

3

transparently process large datasets by assigning sections of the data code onto
several machines in a cluster. The traffic flow data from Trafikverket covers 13
years, per minute resolution at about 500 metres comprises 400 TBytes. To put
some further figures on well-known industries, ​WalMart process 100 million
customer purchases per week [W1]. Google data center performance metrics
produce​ ​3​ ​million​ ​sample​ ​points​ ​per​ ​second​ ​from​ ​their​ ​machines,​ ​monitoring​ ​[G1].

II. Velocity refers to the speed at which new data is generated and how fast it to
move through the analytics pipeline. The New York Stock Exchange captures
about 1 TB of trade information daily. Companies need to process this data in
real time in order to react to changes in the market. The data volume flowing
through these data streams often changes over time, where peak periods often
reach a multiple of the average volumes. Flink is a streaming framework that
achieves high rates by using in-memory, data and parallel processing. Data from
cars and trucks indicating their position, status and service levels generate large
data amounts flowing into a system. Other high velocity data rates from Twitter ​is
around 6K/sec [T1], Google searches are in the 40K per second [​G1​]. The
stream of data from the Large Hadron Collider (LHC), is around 300 GB/s before
filtering​ ​and​ ​300​ ​MB/s​ ​after.​ ​CERN​ ​accumulates​ ​25​ ​PB​ ​per​ ​year​ ​[LHC​1​,​ ​LHC​2​].

III. Variety refers to the different forms of data that we collect and use. Data comes
in different formats: structured, semi-structured or unstructured. Semi-structured
data has some structural component such as identifiers but also contains
unstructured data such as tag clouds. 80-85% of all the world’s data is now
unstructured text, audio, video, click streams, log files etc. The STRADA accident
data from the Swedish police comprises different types of input. This is mostly
because the data is hand-entered, by a police, rescue staff or hospital staff,
however​ ​it​ ​is​ ​in​ ​a​ ​database​ ​with​ ​well-defined​ ​records.

IV. Veracity​. The average billion-dollar company loses about $130 million a year
due to poor data management [4]. Veracity refers to the quality of data. Data is
often incomplete, inconsistent or biased in nature. This is especially true when
data from different sources is combined. iii) A typical example is where the space
dimension is not quite correct (i.e. not a GPS location). iv) In BADA the
“Ds_reference”, a grid reference does not give us sufficient accuracy to infer
vehicle​ ​position.

4

http://www.internetlivestats.com/google-search-statistics/
http://en.wikipedia.org/wiki/Large_Hadron_Collider#Computing_resources
http://en.wikipedia.org/wiki/Worldwide_LHC_Computing_Grid

V. Value is about generating knowledge from the data. This is a big challenge since
most analytical tools, visualisation techniques and algorithms do not scale. As a
result highly specialized frameworks and algorithms are necessary that are only
applicable in narrow conditions. The value in the safety information is high, as
accidents cost in people’s lives, recuperation, insurance, reparation and so on.
Anything that can reduce the number of accidents is beneficial for all society. The
value of the traffic flow data is also high, particularly in “diagnosing” congestion,
but​ ​can​ ​be​ ​used​ ​in​ ​infrastructure​ ​planning​ ​and​ ​even​ ​extensions​ ​to​ ​the​ ​highways.

4​ ​A​ ​typical​ ​data​ ​processing​ ​pipeline

The Hadoop ecosystem consists of modules that help program the system, manage and
configure the cluster, manage data in the cluster, manage storage in the cluster,
perform analytic tasks. The majority of the modules we will describe are the
components and related technologies. Figure 2 shows a flow diagram for a typical data
processing pipeline. Data is generated by a process and then stored. Visualisation and
analytic jobs read the data and enrich, modify or visualize it. A general agreement on
how the data should be structured allows for the different components to interact. The
whole​ ​structure​ ​executes​ ​on​ ​a​ ​hardware​ ​or​ ​virtualized​ ​environment,​ ​Figure​ ​2.

Figure​ ​2:​ ​A​ ​data​ ​processing​ ​pipeline,​ ​section​ ​numbers​ ​in​ ​parenthesis

We will consider the technology in the next section, both examples of batch and
streaming processing. Some words on the background on analysis is given.

5

Visualisation is treated in a page and for the data sources, we give 2 from the BADA
project:​ ​The​ ​hazard​ ​warning​ ​system​ ​and​ ​the​ ​traffic​ ​flow​ ​examples​ ​are​ ​in​ ​section​ ​7.

5​ ​Technologies

Figure​ ​3:​ ​Data​ ​processing​ ​in​ ​a​ ​nutshell,

bold​ ​sections​ ​are​ ​covered​ ​in​ ​this​ ​report​ ​(source:​ ​Amir​ ​Payberah)

6

5.1​ ​Server​ ​technologies

A single machine or personal computer is typically classified as a single CPU with
multicore architecture, with typically 250GB to 1T disk and between 8-32GB of main
memory,​ ​so​ ​why​ ​use​ ​multiple​ ​machines​ ​in​ ​a​ ​rack-mounted​ ​configuration?

1. Data​ ​does​ ​not​ ​fit​ ​a​ ​single​ ​machine
2. Single​ ​machine​ ​cannot​ ​process​ ​the​ ​data​ ​in​ ​time
3. Data​ ​too​ ​complex​ ​to​ ​analyse​ ​on​ ​single​ ​machine

A server system is designed to handle requests opposed to clients which issue them. In
practice this means CPUs with many cores, more main memory and faster interconnect
than our client/laptop systems. Hypervisor support for virtualisation is of course
necessary in server systems. Power supplies and power smoothing are also necessary
in​ ​a​ ​server​ ​system,​ ​as​ ​reliability​ ​is​ ​a​ ​core​ ​issue.

Clusters are typically built from a rack-mounted PC with server-like configurations,
specific cooling, modular architecture, hot-swappable and energy efficient. A common
architecture is called ​blade, ​which has IEEE size compliance​. A blade server requires a
blade enclosure, which holds multiple servers, a 1 unit (480mm x 44mm) being the
standard​ ​physical​ ​configuration.​ ​A​ ​rack​ ​is​ ​42​ ​units​ ​which​ ​typically​ ​contains​ ​128​ ​servers.

Figure​ ​4:​ ​Probability​ ​of​ ​server
failure​ ​over​ ​its​ ​lifespan

7

How is data transferred within a cluster? Blade servers generally include integrated or
optional network interface controllers. These are typically Ethernet or host adapters for
Fibre Channel storage systems. Converged network adapters combine storage and
data via one Fibre Channel over Ethernet (​FCoE​) ​interface are commonplace. In many
blades at least one interface is embedded on the motherboard and extra interfaces can
be added using add on (mezzanine) cards. A blade enclosure can provide individual
external ports to which each network interface on a blade will connect. Alternatively, a
blade enclosure can aggregate network interfaces into interconnect devices (such as
switches) built into the blade enclosure or in networking blades. A Cisco UCS B200 M4
blade server, achieves up to 80 Gbps throughput using Fibre interconnect [CiscoBlade].

The market is dominated by Cisco, which through acquisitions, has 40% of the US
market​ ​[wikipedia].

Access speeds​: In terms of flexibility and speed storing data in memory is a large gain.
Essentially​ ​the​ ​difference​ ​between​ ​memory​ ​and​ ​disk​ ​access​ ​is​ ​considerable,​ ​as​ ​shown.

L1​ ​cache​ ​reference​ ​.........................​ ​0.5​ ​ns

Branch​ ​mispredict​ ​............................​ ​5​ ​ns

L2​ ​cache​ ​reference​ ​...........................​ ​7​ ​ns

Mutex​ ​lock/unlock​ ​...........................​ ​25​ ​ns

Main​ ​memory​ ​reference​ ​......................​ ​100​ ​ns

Compress​ ​1K​ ​bytes​ ​with​ ​Zippy​ ​.............​ ​3,000​ ​ns​ ​=​ ​3​ ​µs

Send​ ​2K​ ​bytes​ ​over​ ​1​ ​Gbps​ ​network​ ​.......​ ​20,000​ ​ns​ ​=​ ​20​ ​µs

SSD​ ​random​ ​read​ ​........................​ ​150,000​ ​ns​ ​=​ ​150​ ​µs

Read​ ​1​ ​MB​ ​sequentially​ ​from​ ​memory​ ​.....​ ​250,000​ ​ns​ ​=​ ​250​ ​µs

Round​ ​trip​ ​within​ ​same​ ​datacenter​ ​......​ ​500,000​ ​ns​ ​=​ ​0.5​ ​ms

Read​ ​1​ ​MB​ ​sequentially​ ​from​ ​SSD*​ ​.....​ ​1,000,000​ ​ns​ ​=​ ​1​ ​ms

Disk​ ​seek​ ​...........................​ ​10,000,000​ ​ns​ ​=​ ​10​ ​ms

Read​ ​1​ ​MB​ ​sequentially​ ​from​ ​disk​ ​....​ ​20,000,000​ ​ns​ ​=​ ​20​ ​ms

Send​ ​packet​ ​CA->Netherlands->CA​ ​....​ ​150,000,000​ ​ns​ ​=​ ​150​ ​ms

(*​ ​Assuming​ ​~1GB/sec​ ​SSD)

Table​ ​1:​ ​Access​ ​speeds​ ​for​ ​computing​ ​resources

Disk ​storage is the building block on which all other components in big data processing
systems depend. Storage has two main roles: first, it acts as connector between

8

different systems. In some sense, storage in this role is used in a real time setting,
where different processes can coordinate in space (e.g. same file, socket ID) and time.
A classic example is one process writing its output to storage, whilst another reads the
same data. Reader-writers are sometimes called producer-consumers in some
literature. One requirement in this role is that the storage is relatively fast, in seek, read
and write times. Storage’s second role is to act as a persistent place so data needed for
future use is not lost. Failure, rollbacks and of course analysis are just some of the uses
of stored data. In some cases the storage for longer term needs is not as fast as the first
role,​ ​and​ ​may​ ​be​ ​larger​ ​in​ ​capacity.

One important aspect that all big data systems have in common is that they treat data
as immutable. This is quite a paradigm shift compared to local or cloud-based storage.
Once a datapoint is written it cannot be modified. The chief reason for immutable
storage systems is that systems are distributed, and allowing for random read-write
operations access would degrade performance. This however does not mean that data
cannot be updated. Most system have a versioning system that allow to write new
versions​ ​of​ ​the​ ​data​ ​that​ ​can​ ​then​ ​be​ ​accessed.

5.2​ ​Data​ ​storage
Big Data platforms require a storage system capable of storing large datasets in a
reliable way and serve them efficiently when they are processed. Many new data
storage systems have been proposed to fulfill the demands of different Big Data use
cases. We can classify these storage systems into two classes. 1) Batch data stores (or
data at rest), and 2) Streaming data stores (or data in motion). The main difference is
that batch data stores are optimized to store and serve very large amounts (Volume) of
data for long period of time. While streaming data stores are considered as a temporary
storage designed to deal with high arrival rate of new data (Velocity) and delivering
fresh data to its consumers as fast as possible while guaranteeing that data is not lost
before​ ​it​ ​being​ ​processed.

5.2.1​ ​Batch​ ​storage​ ​:​ ​The​ ​HDFS​ ​file​ ​system
HDFS is the current industry standard in storage in big data systems. The hadoop file
system (HDFS) is an open source implementation derived from the Google File System
(GFS). It is built to handle large files. A typical file in HDFS is gigabytes to terabytes in

9

size. It provides high aggregate data bandwidth and can scale to hundreds of nodes in a
single cluster. HDFS applications need a write-once-read-many access model for files.
A file once created, written, and closed need not be changed. This assumption
simplifies​ ​data​ ​coherency​ ​issues​ ​and​ ​enables​ ​high​ ​throughput​ ​data​ ​access.

Figure​ ​5:​ ​Relationship​ ​between​ ​name​ ​and
storage​ ​nodes

HDFS runs in a cluster of machines, consisting of storage nodes and a name node.
Files stored in HDFS are split into blocks of a fix size, distributed and replicated
between the storage nodes. The meta information about each file as well as the location
of all of its blocks is stored at the namenode. When reading from HDFS a client asks the
name node for the locations of the blocks and reads them directly from the storage
nodes. When writing the client request a number of blocks from the namenode and
receives a list of storage nodes where they are written. Reading and writing can be
done to all involved storage nodes in parallel, so read operations usually bound by
network throughput instead of disk speed. The inner workings of the read and write
operation are usually hidden by the client software. HDFS has become the basis for
most big data systems and has good support and tooling. Many companies, such as
Cloudera​ ​and​ ​Hortonworks​ ​offer​ ​solutions​ ​and​ ​support​ ​for​ ​HDFS.

5.2.2​ ​Stream​ ​‘storage’​ ​:​ ​Kafka
Apache Kafka is an open-source stream processing platform that provides a unified,
high-throughput,​ ​low-latency​ ​platform​ ​for​ ​handling​ ​real-time​ ​data.

Most applications using streaming data have strict latency requirements. For high speed
trading for example, information that is several minutes old is not important anymore. As

10

a result it is often enough to persist the data for a limited amount of time to allow for
failure recovery. It's not necessary to store data indefinitely. In cases where the data is
also used for batch processing it’s typical to stream it into a different storage solution
such​ ​as​ ​HDFS​ ​or​ ​Cassandra.

Its storage is essentially a publish-subscribe message queue and its design stems from
transaction log processing. Apache Kafka the main message broker used for big data
streaming applications. There are connectors and clients available for many systems
that​ ​allow​ ​an​ ​easy​ ​integration​ ​into​ ​a​ ​streaming​ ​architecture.

Figure​ ​6:​ ​Relationship​ ​between​ ​clients​ ​and​ ​the​ ​Kafka​ ​cluster

Kafka runs in a cluster of machines as shown in Figure 6. When a client writes to it, it
needs to specify a ​topic. ​For streaming application the ​connector ​aspect of storage
becomes the main focus. Therefore these storage systems are also called message
brokers.

Data is written and consumed on a per record base at very high speed by many
different actors. Th​e Kafka ecosystem at LinkedIn handles over 800 billion messages
per day. At the busiest times, LinkedIn’s system processes 13 million messages per
second. LinkedIn runs over 1100 Kafka brokers organized into more than 60 clusters​.
Kafka​ ​is​ ​written​ ​both​ ​in​ ​Scala​ ​and​ ​Java.

An example of a producer in java is below. We include code to illustrate what is below
the​ ​concepts​ ​in​ ​this​ ​document,​ ​plus​ ​a​ ​start​ ​point​ ​on​ ​how​ ​to​ ​read​ ​source​ ​code.

11

https://en.wikipedia.org/wiki/Apache_Kafka#cite_note-4

import​​ ​java​.​util​.​Properties​;
import​​ ​org​.​apache​.​kafka​.​clients​.​producer​.​Producer​;
import​​ ​org​.​apache​.​kafka​.​clients​.​producer​.​KafkaProducer​;
import​​ ​org​.​apache​.​kafka​.​clients​.​producer​.​ProducerRecord​;

public​​ ​​class​​ ​​SimpleProducer​​ ​​{

​ ​​public​​ ​​static​​ ​​void​​ ​main​(​String​[]​​ ​args​)​​ ​​throws​​ ​​Exception​{

​ ​​ ​​//​ ​Check​ ​arguments​ ​length​ ​value
​ ​​ ​​if​(​args​.​length​ ​​==​​ ​​0​){
​ ​​ ​​ ​​System​.​out​.​println​(​"Enter​ ​topic​ ​name”);
​ ​​ ​​ ​return;
​ ​​ ​}

​ ​​ ​//Assign​ ​topicName​ ​to​ ​string​ ​variable
​ ​​ ​String​ ​topicName​ ​=​ ​args[0].toString();

​ ​​ ​//​ ​create​ ​instance​ ​for​ ​properties​ ​to​ ​access​ ​producer​ ​configs
​ ​​ ​Properties​ ​props​ ​=​ ​new​ ​Properties();

​ ​​ ​//Assign​ ​localhost​ ​id
​ ​​ ​props.put("​bootstrap​.​servers​",​ ​“localhost:9092"​);

​ ​​ ​​//Set​ ​acknowledgements​ ​for​ ​producer​ ​requests.
​ ​​ ​props​.​put​(​"acks"​,​​ ​​“​all​");

​ ​​ ​//If​ ​the​ ​request​ ​fails,​ ​the​ ​producer​ ​can​ ​automatically​ ​retry,
​ ​​ ​props.put("​retries​",​ ​0);

​ ​​ ​//Specify​ ​buffer​ ​size​ ​in​ ​config
​ ​​ ​props.put("​batch​.​size​",​ ​16384);

​ ​​ ​//Reduce​ ​the​ ​no​ ​of​ ​requests​ ​less​ ​than​ ​0
​ ​​ ​props.put("​linger​.​ms​",​ ​1);

​ ​​ ​//The​ ​buffer.memory​ ​controls​ ​the​ ​total​ ​amount​ ​of​ ​memory​ ​available​ ​to​ ​the​ ​producer​ ​for​ ​buffering.
​ ​​ ​props.put("​buffer​.​memory​",​ ​33554432);

​ ​​ ​props.put("​key​.​serializer​",
​ ​​ ​​ ​"​org​.​apache​.​kafka​.​common​.​serialization​.​StringSerializer​");

​ ​​ ​props.put("​value​.​serializer​",
​ ​​ ​​ ​"​org​.​apache​.​kafka​.​common​.​serialization​.​StringSerializer​");

​ ​​ ​Producer<String,​ ​String>​ ​producer​ ​=​ ​new​ ​KafkaProducer
​ ​​ ​​ ​<String,​ ​String>(props);

​ ​​ ​for(int​ ​i​ ​=​ ​0;​ ​i​ ​<​ ​10;​ ​i++)
​ ​​ ​​ ​producer.send(new​ ​ProducerRecord<String,​ ​String>(topicName,
​ ​​ ​​ ​​ ​​ ​Integer.toString(i),​ ​Integer.toString(i)));
​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​System.out.println(“Message​ ​sent​ ​successfully”);
​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​producer.close();
​ ​​ ​}
}

12

https://www.tutorialspoint.com/apache_kafka/apache_kafka_simple_producer_example.htm

Figure​ ​7:​ ​Java​ ​producer​ ​example​ ​code

5.3​ ​Processing​ ​frameworks

5.3.1​ ​Batch​ ​processing

The basics are that certain amounts of data are read and processed. The classic usage
is the file, which can range from a few bytes to gigabytes. In a batch system, the whole
file is read, often sorted, and then processed. It may be matched, merged or
“compared” with other sources, correlated or deeper processed, for example two faces
for similarity. Larger amounts of data can be read, but files are typical. Batch processing
frameworks are Hadoop, Spark, Hopsworks and many considered in this document. In a
stream processing context the data is compared record-by-record in a database, or
line-by-line​ ​in​ ​a​ ​file​ ​or​ ​event-by-event​ ​in​ ​a​ ​messaging​ ​system.​ ​One​ ​example​ ​is​ ​next.

5.3.2​ ​Stream​ ​processing
In Batch processing, programs execute for a finite amount of time until all the available
data are processed and results are produced. On the other hand stream processing is
designed to continuously execute to process infinite data (such as sensor
measurements or user interactions with a web service) as long as data is being
produced. Batch processing can be viewed as a way to analyze and get insights from
large volumes of historical data while stream processing is viewed as a tool to rapidly
analyze and react to the current situation. Examples of stream processing frameworks
include​ ​Flink,​ ​Spark​ ​streaming,​ ​Storm,​ ​and​ ​Kafka​ ​streams.

5.4​ ​Database​ ​implementation

How data is consumed often affects on how it should be stored. The traditional
database approach (SQL) requires some changes in a very large data setting. If
searching over a very large number of records is necessary, indexing the data becomes

13

https://www.tutorialspoint.com/apache_kafka/apache_kafka_simple_producer_example.htm

essential. Traditional database technology does not scale to the volume or velocity
required by many big data applications since transactions, plus the ability to change
data rapidly become unscalable. ​Cassandra and ​elasticsearch offer big data
solutions in 2017. For data amounts larger than 500GB, we think Zeppelin+HopsWorks
is a better option. A BADA safety example is given in the first use case 6.1. Larger data
amounts are being done in the queue detection of second use case, 6.2. Technically,
very​ ​large​ ​databases​ ​use​ ​key​ ​value​ ​stores,​ ​rather​ ​than​ ​a​ ​SQL​ ​normalised​ ​tables.

6​ ​Data​ ​analytics

6.1​ ​Exploratory​ ​data​ ​analysis
Is an important phase in understanding large datasets. Obtaining the tools,
understanding the problem and team up to speed can be done via an early data
exploration phase. That is read the data, the data, show simple time-series, histograms,
correlation between 2 variables (scatter) or multi-variable correlation. An important
aspect is to try and show the early results from the data in a trimmed down,
command-line manner. In our cases, the first used case was i) a series of PDF plots, an
interactive ​plot.ly plot and a series of plots as an animation. The goal was to show
which roads are suitable for detecting traffic queue buildups. ii) Using logstash, kibana
and elasticsearch (see below). The traffic flow data is 5 GB / month, and constitutes the
sensor data of public highways in Sweden. We use this data to show how vehicles are
distributed​ ​in​ ​space​ ​(roads,​ ​cities)​ ​and​ ​time​ ​(min,​ ​hour,​ ​day,​ ​weekly,​ ​seasonal).

6.2​ ​Information​ ​design
Is the practice of presenting information in a way that fosters efficient and effective
understanding. The term has come to be used specifically for graphic design for
displaying information effectively. Information design is closely related to the field of
data visualization and is often taught as part of graphic design courses Information
design is explanation design. In the use case of queue detection within BADA, we need
to be able to show space and time in plots, as the dependent/chosen ​(x) variables, and
average speed, flow, density, as independent/calculated ​(y) variables. The space
variable might also include map visualisations [vis]. ​(Interactive) data visualization, is a
growing area, where users interact with the data, from simple mouseover events, to

14

complex reordering of the data in real time to expose possibly hidden interesting
artifacts.​ ​We​ ​use​ ​visualisation​ ​in​ ​the​ ​traffic​ ​flow​ ​queue​ ​buildup​ ​scenario.

6.3​ ​Descriptive​ ​statistics
Often overlooked for quantitative methods, descriptive statistics use linguistic terms or
quantitative terms encoded into emotional terms “acceptable, poor, excellent”. These
terms, such as the quality of a voice call or feedback at an airport (red-green smiley
buttons). The value of distilling down complex and long calculations based on data to
simple expressions, is useful, “we are at the tail of the traffic of queue” to further
decision making. Management science relies heavily on descriptive statistics, as the
parameters are well known, human intuition is a strong indicator of a correct “ground
truth”​ ​in​ ​the​ ​absence​ ​of​ ​quantitative​ ​data​ ​and​ ​is​ ​understood​ ​by​ ​all.

6.4​ ​Inferential​ ​statistics
With inferential statistics, conclusions that extend beyond the immediate data alone is
the goal. An example from real life is to infer from a small sample of people what a
population might think. Alternatively, inferential statistics help determine whether a
difference between groups, is statistically significant important, or can be explained by
plain​ ​randomness.

Three uses of the ​t-test in the BADA project are 1) using inferential statistics to infer
between types of drivers, for example a driver of a truck or a car. (Recall that we have
only flow data). Another example is infer between a fast or slow driver in the dataset.
Again, we have no ground truth, but could confirm a faster driver by testing against the
frequency of lane changes and not. Here, one would construct a hypothesis, “fast
drivers change lanes more frequently” true or false?. A 3) use is to compare the
average performance between two groups one method is the ​t-test​. In BADA we use
the ​t-test ​like this to verify if the density is really a queue, as it requires less samples
than​ ​it’s​ ​larger​​ ​Z-test​ ​​brother.

6.5​ ​Visualisation
The way the brain processes data, for example using charts or graphs to represent
large amounts of complex data can be easier than reports or tables. Data visualization
is a quick, easy way to convey concepts in a universal manner – and one can
experiment with different scenarios by making slight adjustments. By identifying areas

15

that need attention or improvement, clarifying which factors influence customer
behavior. Web-based tools using Javascript run in the browser, allow users access to
any site on a public IP address, it also allows the provider to move the data into a cloud
service (permitting caching, protection against hacks, DoS etc.). Also upgrades can be
done without the consumers actually noticing. For example visualisation helps one
understand function of two variables, f(x, y) ​with time (by animating) dynamics.
Indeed, we use this idea to show queue buildups, showing speed, density and flow as a
function​ ​of​ ​space​ ​and​ ​time​ ​(see​ ​use​ ​case​ ​2).

6.6​ ​Deep​ ​learning
TensorFlow is an open source software library for numerical computation using data
flow graphs. The architecture makes computation to 1+ C/GPUs using a single API.
Developed by Google for machine learning and deep neural networks research, it is
useable to general applications too. In our case, within BADA, we will use TensorFlow
to learn which queue buildups are normal, for a given space and time (x, t), ​and
which​ ​are​ ​anomalies​ ​for​ ​that​ ​place​ ​and​ ​time.

7​ ​BADA​ ​use​ ​cases

7.1​ ​Hazard​ ​warning

Figure 8 shows the architecture designed for the hazard warning BADA scenario. The
datasource is a HDFS file containing a list of geolocations. They are read by a Flink
process that applies a time delay to simulate an event stream and writes the data back
to a kafka topic. Another Flink process is consuming the so called topic. For each record
it contacts and external ​openstreetmap server to find the language surrounding the
geocoordinate. Based on the result it flags the record to be in a rural, residential or if not
found unknown area. It pushes the results into ​elasticsearch​. The results can then
be queried and visualized using ​kibana​. All components, besides the external server,
are​ ​executed​ ​on​ ​a​ ​Hopworks​ ​cluster​ ​(described​ ​below).

16

Figure​ ​8​ ​:​ ​Kafka​ ​streaming​ ​architecture

7.2​ ​Traffic​ ​safety​ ​use​ ​case

In​ ​this​ ​case​ ​​ ​we​ ​visualise​ ​the​ ​STRADA​ ​dataset,​ ​which​ ​is​ ​a​ ​national​ ​information​ ​system​ ​of​ ​road
transport​ ​accidents​ ​in​ ​Sweden.​ ​The​ ​key​ ​work​ ​we​ ​have​ ​done​ ​in​ ​this​ ​use​ ​case​ ​are:

● Data​ ​exploration:
● Gain​ ​insights​ ​into​ ​the​ ​data
● Know​ ​the​ ​limits​ ​of​ ​the​ ​dataset
● Elasticsearch/Kibana:​ ​Efficiently​ ​search​ ​and​ ​visualize​ ​large​ ​datasets

These​ ​are​ ​shown​ ​in​ ​the​ ​RISE-SICS​ ​demonstration​ ​shown​ ​in​ ​Figure​ ​9.

17

Figure​ ​9:​ ​Traffic​ ​safety​ ​dashboard

18

7.3​ ​Traffic​ ​flow​ ​example​ ​with​ ​queue​ ​buildup

Figure​ ​10:​ ​Traffic​ ​flow​ ​detection.

Top​ ​figure,​ ​road​ ​example,​ ​bottom​ ​figure,​ ​big​ ​data​ ​solution.

An example of batch processing, analysis is the congestion detection currently ongoing
at RISE, Volvo, Scania and trafikverket. Using 11 years of data from Trafikverket and
Volvo, we are working on queue detection [Ian1]. The general idea is to use the density
changes in traffic to detect queue buildups. A similar project is at TU Berlin and the Flink
startup​ ​Data​ ​Artisans​ ​[Art1].

19

The queue detection is based on the simple equation flow = density * speed, so where
red cars are in the left figure and where the red circle is on the flow vs. density curve.
Once detected, we will use the data to train our algorithm to remove the positions and
times where queues always build up (Gothenburg 08:00 Monday morning). Once
trained, we will use data from the traffic system, ​streamed in real time​, into our system.
This is shown in the right figure. Note, the system must be trained for the system, using
Kafka​ ​to​ ​detect​ ​unusual​ ​queue​ ​accumulations.

7.4​ ​Future​ ​use​ ​cases

7.4.1​ ​Self-regulating​ ​traffic​ ​flow

A use case we envisage is a self-regulation of traffic flow. That is, vehicles regulate their
distance in order to achieve optimal flow, ​for each road section. Information for which
distance to maintain can be fed to the driver in one of three forms: 1) Via the vehicle
itself, 2) by the roadside infrastructure, 3) or by an app to guide the driver. By using
information about the macroscopic traffic flow and microscopic behaviour of the
individual vehicle, it is possible to be at the optimal spacing, or density, to achieve the
best flow, at any place or time. From the data we have and collaboration of the vehicle
manufacturers and some research, we can fill the gap between completely autonomous
vehicles,​ ​and​ ​the​ ​current​ ​situation​ ​of​ ​humans​ ​totally​ ​controlling​ ​the​ ​vehicles.

7.4.2​ ​Extension​ ​of​ ​the​ ​hazard​ ​warning​ ​light​ ​scenario
By pressing the hazard warning sign, vehicles indicate that they are slowing down or
stopping. We could extend this work by signalling to other vehicles that this is
happening to the traffic flow. Currently Scania/Volvo trucks do not feed data into the
Kafka​ ​queue,​ ​and​ ​this​ ​is​ ​clearly​ ​something​ ​that​ ​could​ ​and​ ​should​ ​be​ ​done​ ​in​ ​the​ ​future.

7.4.3​ ​Mining​ ​11​ ​years​ ​of​ ​flow​ ​data
With 11 years of traffic flow, there is a large amount of data to be analyzed, with use
cases of reducing congestion over sweden, towards a ‘smart motorway’ or better
estimation of arrival times (GPS doesn’t take into congestion). Correlation of weather
and​ ​traffic​ ​conditions​ ​is​ ​very​ ​much​ ​a​ ​topic​ ​in​ ​Sweden,​ ​sensors​ ​in​ ​tyres,​ ​road​ ​conditions.

20

8​ ​A​ ​brief​ ​technology​ ​chronology

In 2002 Doug Cutting and Mike Cafarella crawled the Web and indexed content in order
to start to produce an Internet search engine. They needed a scalable method to store
the content of their crawling and indexing. The standard method to organize and store
data at the time were relational database management systems (RDBMS), accessed
via the SQL language. They quickly discovered neither were appropriate for Internet
search engine data construction use, essentially cost, scalability and reliability (to
failure) were their documented hurdles. In 2003/4 Google published two papers, one on
the Google File System (GFS) [1] and a second on a programming model for clustered
servers​ ​called​ ​MapReduce​ ​[2].

8.1​ ​Hadoop
Cutting and Cafarella incorporated these technologies into a project they called Hadoop, named
after a stuffed toy elephant. The GFS soon migrated into the Hadoop file system, or HDFS.
Yahoo began using Hadoop and it soon spread to other organizations, it is still one of the
predominant​ ​big​ ​data​ ​platforms​ ​even​ ​as​ ​of​ ​2017.

1. The​ ​Hadoop​ ​Distributed​ ​File​ ​System​ ​(HDFS)
2. The​ ​MapReduce​ ​programing​ ​platform
3. The​ ​Hadoop​ ​ecosystem,​ ​tools​ ​to​ ​store​ ​and​ ​organize​ ​data

In 2012, version 2.0 of Hadoop was released as YARN, Yet Another Resource
Negotiator. Again it’s purpose is cluster management. YARN exists between the data
and MapReduce, allowing additional tools to be inserted into the big data processing
stack. Examples of tools include Spark and Giraph. YARN does not replace
MapReduce,​ ​it​ ​solely​ ​provides​ ​a​ ​uniform​ ​way​ ​for​ ​tools​ ​to​ ​run​ ​on​ ​a​ ​Hadoop​ ​cluster.

8.2​ ​Spark
Spark is designed to provide a flexible computing model that supports many of the
multipass features that don’t exist in MapReduce. It accomplishes this in order to reduce

21

the amount of data that is written to and read from disk. It is a complete replacement for
MapReduce​ ​that​ ​includes​ ​its​ ​own​ ​work​ ​execution​ ​engine​ ​built​ ​on​ ​three​ ​core​ ​concepts:

1. Resilient Distributed Dataset (RDD) contain data that you want to transform or
analyze. They can be read from an external source, such as a file or a database,
or​ ​created​ ​by​ ​a​ ​transformation​ ​(next).

2. Transformations modify an existing RDD to create a new one. A filter that pulls
ERROR​ ​messages​ ​from​ ​a​ ​log​ ​file​ ​is​ ​a​ ​transformation.

3. Actions​ ​analyze​ ​an​ ​RDD​ ​and​ ​return​ ​a​ ​single​ ​result.​ ​E.g.,​ ​an​ ​action​ ​to​ ​count​ ​the
number​ ​of​ ​results​ ​identified​ ​by​ ​the​ ​ERROR​ ​filter.

Significant work in Spark is done by the functional programming language, Scala ​[3]. It
combines object orientation with functional programming, Spark has recently added
support for Python, via PySpark, it is growing in popularity via using and sharing
notebooks (commands, data, and plots). Commercial support for Spark is provided by
many​ ​companies,​ ​in​ ​the​ ​US​ ​one​ ​of​ ​worthy​ ​of​ ​mention​ ​is​ ​[Databricks].

8.3​ ​HopsWorks
The​ ​BADA​ ​project​ ​utilises​ ​HopWorks,​ ​a​ ​next-generation​ ​distribution​ ​of​ ​Apache​ ​Hadoop:

1. Hadoop​ ​as​ ​a​ ​Service
2. Project-based​ ​multi​ ​tenancy
3. Secure​ ​sharing​ ​of​ ​dataSets​ ​across​ ​projects
4. Extensible​ ​metadata​ ​supporting​ ​free​ ​text​ ​search
5. YARN​ ​quotas​ ​for​ ​projects

The key innovation that enables these features is a new architecture for scale-out,
consistent metadata for both the HDFS filesystem and the YARN Resource Manager.
The new metadata layer enables the support of multiple stateless NameNodes and TBs
of metadata stored in a MySQL Cluster Network Database. It is a distributed, relational,
in-memory, open-source database [Jim]. It enables HopsWorks to provide tools for
designing extended metadata, whose integrity with filesystem data is ensured through
foreign keys in the database. Extended metadata enables the implementation of

22

quota-based scheduling for YARN, where projects can be given quotas of CPU
hours/minutes and memory, thus enabling resource usage in Hadoop-as-a-Service to
be​ ​accounted​ ​and​ ​enforced.​ ​​Support​ ​is​ ​provided​ ​by​ ​LogicalClocks​ ​in​ ​Stockholm.

8.4​ ​Flink
Apache Flink is a platform for efficient, distributed, general-purpose data processing. It
features powerful programming abstractions in Java and Scala, a high-performance
runtime, and automatic program optimization. It has native support for iterations,
incremental iterations, and programs consisting of large DAGs of operations. Flink
Streaming is an extension of the core Flink API for high-throughput, low-latency data
stream processing. The system can connect to and process data streams from many
data sources like RabbitMQ, Flume, Twitter, ZeroMQ and also from any user defined
data​ ​source.

8.5​ ​Big​ ​data​ ​processing​ ​architecture
The platforms and tools discussed so far are all parts of an ecosystem (Figure 3) with
different components interacting together and playing their role in the big data
application. Two best-practice architecture emerged that outline how to connect these
components together to achieve high throughput and low latency data processing. The
Lambda [Lambda] Architecture proposes the use of two layers, a batch layer for
managing historical data and a real-time layer to rapidly process incoming data. Queries
are answered by combining batch view with the real-time view. The Kappa Architecture
is a new vision where their community believes everything should be streaming-based.
Data is stored as an append-only immutable log. Supporters of Kappa architecture
argue that this simplifies the platform by eliminating the need for a separate batch
processing​ ​system​ ​and​ ​storage.

23

9​ ​Summary

This report aimed to give a brief overview of the big data technology components. We
chose open source projects. We focussed on ​open source-based products, most
available​ ​from​ ​the​ ​Apache​ ​foundation.

The report provided an overview of the technologies and some principles, for example
messaging passing and data pipeline. We differentiated between batch and stream
processing​ ​with​ ​perhaps​ ​the​ ​prospect​ ​of​ ​harmonisation​ ​via​ ​the​ ​kappa​ ​framework.

Within 30 pages we have tried to give the basics of big data processing, with reference
to the projects SICS/RISE is involved in. The annotated reference list next should be a
place​ ​for​ ​the​ ​reader​ ​to​ ​continue​ ​with.

Good​ ​luck,​ ​SICS-RISE

24

10​ ​Annotated​ ​reading​ ​list

General
[BD1]​ ​​Big​ ​Data,​ ​for​ ​Better​ ​or​ ​Worse:​ ​90%​ ​of​ ​World’s​ ​Data​ ​Generated​ ​over​ ​Last​ ​Two
Years.​​ ​Report​ ​from​ ​a​ ​research​ ​institute​ ​in​ ​Norway,​ ​SINTEF,​ ​​ ​about​ ​when​ ​and​ ​how​ ​large
amounts​ ​of​ ​data​ ​have​ ​been​ ​generated.​ ​An​ ​interesting​ ​read.

[SemiTech1]​ ​​https://www.oreilly.com/ideas/ideas-on-interpreting-machine-learning​.​ ​A
nice​ ​technical​ ​overview,​ ​covers​ ​things​ ​not​ ​in​ ​this​ ​document.

[Transform1]
http://www.amazon.in/Big-Data-Revolution-Transform-Think/dp/1848547927/262-1981668-3147
756​.​ ​Informative​ ​text​ ​on​ ​the​ ​revolution​ ​taking​ ​place​ ​now.

Commercial
[Jim]​​ ​​https://www.youtube.com/watch?v=pr_9jF-wL3M​​ ​​Strongly​ ​consistent​ ​metadata
talk,​ ​SICS​ ​data​ ​science​ ​day.​ ​Motivates​ ​the​ ​design​ ​choice​ ​for​ ​HopsWorks.​ ​Technical​ ​in
nature,​ ​but​ ​good​ ​presentation.

[I1]​ ​​http://www.internetlivestats.com/twitter-statistics/
[I2]​ ​​http://www.internetlivestats.com/google-search-statistics/​.​ ​Simple​ ​rolling​ ​counter​ ​of
the​ ​Internet​ ​use.​ ​Although​ ​shallow​ ​technically,​ ​it​ ​provides​ ​some​ ​quantitative​ ​counts​ ​on
the​ ​Internet,​ ​updated​ ​on​ ​a​ ​second​ ​basis​ ​:-)

[G1]​ ​​https://plus.google.com/+JamesPearn/posts/VaQu9sNxJuY​.​ ​Somewhat​ ​old​ ​(2012),
but​ ​provides​ ​some​ ​stats​ ​on​ ​Google’s​ ​data​ ​centers.

[W1]​ ​​http://www.businesspundit.com/stats-on-walmart​.​ ​Some​ ​numbers​ ​on​ ​the​ ​data
usage​ ​by​ ​Wal-Mart,​ ​the​ ​largest​ ​retailer​ ​in​ ​the​ ​world.

[N1]​ ​​New​ ​York​ ​Stock​ ​Exchange​ ​Ticks​ ​on​ ​Data​ ​Warehouse​ ​Appliances.

[R1]​ ​​The​ ​Rising​ ​Data​ ​Deluge​ ​Opportunity.

25

http://www.sciencedaily.com/releases/2013/05/130522085217.htm
http://www.sciencedaily.com/releases/2013/05/130522085217.htm
https://www.oreilly.com/ideas/ideas-on-interpreting-machine-learning
http://www.amazon.in/Big-Data-Revolution-Transform-Think/dp/1848547927/262-1981668-3147756
http://www.amazon.in/Big-Data-Revolution-Transform-Think/dp/1848547927/262-1981668-3147756
https://www.youtube.com/watch?v=pr_9jF-wL3M
http://www.internetlivestats.com/twitter-statistics/
http://www.internetlivestats.com/google-search-statistics/
https://plus.google.com/+JamesPearn/posts/VaQu9sNxJuY
http://www.businesspundit.com/stats-on-walmart/
http://www.informationweek.com/news/software/bi/207800705
https://www-304.ibm.com/partnerworld/wps/servlet/download/DownloadServlet?id=rXgq2eT$$StiPCA$cnt&attachmentName=TerraEchos_Kairon_IBM_PowerLinux_servers.pdf&token=MTQwNjU4MzM1OTU2MA==&locale=en_ALL_ZZ

[B1]​ ​​http://www.businesspundit.com/stats-on-walmart/

Use​ ​cases
[Amaz]
https://www.amazon.co.uk/Big-Data-Practice-Cases-Extraordinary/dp/1119231388​.
The book argues promotes itself by many existing companies to fail to grasp the
important steps in large data environments. It tries to fill the knowledge by showing how
major companies are using big data every day. Companies include WalMart, LinkedIn
(Kafka),​ ​NetFlix,​ ​Rolls-Royce,​ ​just​ ​to​ ​mention​ ​a​ ​few.

Spark
[OreillySpark]
http://www.amazon.in/Learning-Spark-Lightning-Fast-Data-Analysis/dp/9351109941​.
Easy​ ​introduction​ ​to​ ​Spark​ ​via​ ​the​ ​popular​ ​Oreilly​ ​series.

[O1]
http://shop.oreilly.com/product/0636920022466​.​ ​Very​ ​useful​ ​glossary​ ​on​ ​big​ ​data​ ​terms.
Well​ ​worth​ ​having​ ​by​ ​the​ ​side​ ​at​ ​a​ ​start​ ​into​ ​the​ ​big​ ​data​ ​and​ ​ML​ ​practices.

[O2]
http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/WritingYarnApplic
ations.html​.​ ​From​ ​the​ ​Apache​ ​forum,​ ​it​ ​describes,​ ​at​ ​a​ ​high-level,​ ​the​ ​way​ ​to​ ​implement
new​ ​Applications​ ​for​ ​YARN.

Technical​ ​publications

[T1]​ ​Sanjay​ ​Ghemawat,​ ​Howard​ ​Gobioff,​ ​and​ ​Shun-Tak​ ​Leung,​ ​“​The​ ​Google​ ​File
System​”,​ ​Proceedings​ ​of​ ​the​ ​Nineteenth​ ​ACM​ ​Symposium​ ​on​ ​Operating​ ​Systems
Principles​ ​(SOSP​ ​2003)​ ​​https://research.google.com/archive/gfs.html
The file system has met Google’s storage needs. It is widely deployed within Google as
the storage platform for the generation and processing of data used by their services as
well as research and development efforts that require large data sets. The largest

26

http://www.businesspundit.com/stats-on-walmart/
https://www.amazon.co.uk/Big-Data-Practice-Cases-Extraordinary/dp/1119231388
http://www.amazon.in/Learning-Spark-Lightning-Fast-Data-Analysis/dp/9351109941
http://shop.oreilly.com/product/0636920022466
http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/WritingYarnApplications.html
http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/WritingYarnApplications.html
https://www-304.ibm.com/partnerworld/wps/servlet/download/DownloadServlet?id=rXgq2eT$$StiPCA$cnt&attachmentName=TerraEchos_Kairon_IBM_PowerLinux_servers.pdf&token=MTQwNjU4MzM1OTU2MA==&locale=en_ALL_ZZ
https://research.google.com/archive/gfs.html

cluster to date provides hundreds of terabytes of storage across thousands of disks on
over a thousand machines, and it is concurrently accessed by hundreds of clients. The
paper presents file system interface extensions designed to support distributed
applications, discuss many aspects of their design, and report measurements from both
micro-benchmarks​ ​and​ ​real​ ​world​ ​use.

[T2]​ ​Jeffrey​ ​Dean​ ​and​ ​Sanjay​ ​Ghemawat,​ ​“​MapReduce:​ ​Simplified​ ​Data​ ​Processing​ ​on
Large​ ​Clusters​”,​ ​Proceedings​ ​of​ ​the​ ​6th​ ​Conference​ ​on​ ​Symposium​ ​on​ ​Operating
Systems​ ​Design​ ​and​ ​Implementation​ ​(2004).
https://static.googleusercontent.com/media/research.google.com/en//archive/mapreduc
e-osdi04.pdf

[T3]​ ​Chen​ ​Zhang,​ ​Hans​ ​De​ ​Sterck,​ ​Ashraf​ ​Aboulnaga,​ ​Haig​ ​Djambazian,​ ​and​ ​Rob
Sladek.​ ​“​Case​ ​study​ ​of​ ​scientific​ ​data​ ​processing​ ​on​ ​a​ ​cloud​ ​using​ ​Hadoop​”.​ ​In​ ​High
performance​ ​computing​ ​systems​ ​and​ ​applications,​ ​pp.​ ​400-415.​ ​Springer​ ​Berlin
Heidelberg,​ ​2010.

Programming

[P1]​ ​The​ ​scala​ ​programming​ ​language​.​​ ​Popular​ ​programming​ ​language​ ​based​ ​on​ ​the
JVM​ ​with​ ​functional​ ​extensions​ ​to​ ​Java,​ ​which​ ​makes​ ​it​ ​suitable​ ​for​ ​big​ ​data
applications,​ ​and​ ​its​ ​adoption​ ​by​ ​companies​ ​like​ ​Databricks.​ ​A​ ​very​ ​good​ ​introduction​ ​at
https://www.scala-lang.org​.

[GK1]​​ ​​https://kubernetes.io/

Streaming
[K1]
https://insidebigdata.com/2016/04/28/a-brief-history-of-kafka-linkedins-messaging-platfo
rm​. History of the development of Kafka though LinkedIn’s eyes. Six years of
development and over 1.4 trillion messages processed, this is an account of the trials
and​ ​tribulations​ ​of​ ​Apache​ ​Kafka​ ​and​ ​it’s​ ​commercial​ ​route​ ​at​ ​LinkedIn.

27

https://static.googleusercontent.com/media/research.google.com/en//archive/mapreduce-osdi04.pdf
https://static.googleusercontent.com/media/research.google.com/en//archive/mapreduce-osdi04.pdf
https://www.scala-lang.org/
https://kubernetes.io/
https://insidebigdata.com/2016/04/28/a-brief-history-of-kafka-linkedins-messaging-platform/
https://insidebigdata.com/2016/04/28/a-brief-history-of-kafka-linkedins-messaging-platform/

[K2]​ ​​https://engineering.linkedin.com/kafka/running-kafka-scale

[K3]
https://cwiki.apache.org/confluence/display/KAFKA/Kafka+papers+and+presentations

[Lambda]​ ​​http://lambda-architecture.net
Lambda architecture is a software architecture pattern that combines batch and stream
processing in the same framework. The batch layer is used to store and query large
volumes of historical data. The real-time streaming layer is used to overcome latency
problems​ ​in​ ​the​ ​batch​ ​layer​ ​by​ ​providing​ ​real-time​ ​view​ ​based​ ​on​ ​fresh​ ​data.

[Kappa]​ ​​http://milinda.pathirage.org/kappa-architecture.com​.
Kappa architecture is a software architecture pattern. Rather than using a relational DB
like SQL or a key-value store like Cassandra, the canonical data store in a Kappa
Architecture system is an append-only immutable log. From the log, data is streamed
through a computational system and fed into auxiliary stores for serving. Kappa
Architecture is a simplification of ​Lambda Architecture​. A Kappa Architecture system is
like a Lambda Architecture system with the batch processing system removed. To
replace​ ​batch​ ​processing,​ ​data​ ​is​ ​simply​ ​fed​ ​through​ ​the​ ​streaming​ ​system​ ​quickly.

[K4]
https://hackernoon.com/a-super-quick-comparison-between-kafka-and-message-queue
s-e69742d855a8

Analytics​ ​and​ ​Visualisation
[V1]​ ​​http://www.informationisbeautiful.net/

[MartinN]
https://docs.google.com/presentation/d/1bX8r2g3f4MeJNy-6uJO7e48hm2Eez6OjCjIEK
nwxhro/edit#slide=id.g211632ad54_0_291

Courses
Data Intensive Computing, KTH, 2016 Amir Payberah, Seif Haridi,
https://www.sics.se/~amir/id2221​.​ ​Very​ ​complete​ ​course,​ ​with​ ​material​ ​online.

28

https://engineering.linkedin.com/kafka/running-kafka-scale
https://cwiki.apache.org/confluence/display/KAFKA/Kafka+papers+and+presentations
http://lambda-architecture.net/
http://milinda.pathirage.org/kappa-architecture.com/
https://en.wikipedia.org/wiki/Lambda_architecture
https://hackernoon.com/a-super-quick-comparison-between-kafka-and-message-queues-e69742d855a8
https://hackernoon.com/a-super-quick-comparison-between-kafka-and-message-queues-e69742d855a8
http://www.informationisbeautiful.net/
https://docs.google.com/presentation/d/1bX8r2g3f4MeJNy-6uJO7e48hm2Eez6OjCjIEKnwxhro/edit#slide=id.g211632ad54_0_291
https://docs.google.com/presentation/d/1bX8r2g3f4MeJNy-6uJO7e48hm2Eez6OjCjIEKnwxhro/edit#slide=id.g211632ad54_0_291
https://www.sics.se/~amir/id2221/

BADA
[Art1]​ ​​http://training.data-artisans.com/exercises/connectedCar.html

[Ian1]
https://docs.google.com/presentation/d/1NFDBYErmfwWzJTMt8p-bpTqUNX8C0HakZA-
GM9eayGk/edit#slide=id.p

29

http://training.data-artisans.com/exercises/connectedCar.html
https://docs.google.com/presentation/d/1NFDBYErmfwWzJTMt8p-bpTqUNX8C0HakZA-GM9eayGk/edit#slide=id.p
https://docs.google.com/presentation/d/1NFDBYErmfwWzJTMt8p-bpTqUNX8C0HakZA-GM9eayGk/edit#slide=id.p

