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Abstract—Macroscopic fluid traffic flow models are used in
this paper to predict connectivity behavior within vehicular to
vehicular (V2V) networks. The vehicular density determines the
radio connectivity in sparse traffic, and may even contribute
to radio interference in dense traffic situations. We propose
modeling the vehicular density using an approach from physics
and engineering known as traffic flow theory. It builds models
of the interactions between vehicles and road infrastructure
similar to fluid or gas flows in pipelines. We have developed
analytic solutions for estimating vehicular densities based on a
method for solving the traffic flow equations. With very general
infrastructure conditions we can find the density evolution at
any location and time for any (given) initial conditions. Using
such an approach we show how the connectivity, reachability
and broadcast capacities of V2V networks can be calculated
as applications of this approach. Furthermore we can include
the path loss between vehicles and include interference from
dense traffic situations in line and non-line of sight situations.
We parameterize the method using Bluetooth and IEEE 802.11a
radio technologies to show the applicability of such an approach.

I. INTRODUCTION

Traditionally, macroscopic traffic fluid flow1 models have
been used to study the interaction of vehicles on existing road
infrastructure in order to optimize traffic flow through cities,
towns and highways. In this work we use the same techniques
to predict density variations and hence connectivity analysis
in Vehicular Ad-hoc Networks (VANET) communications. In
general it is difficult to ascertain the connectivity of vehicles
in both time and location. The interaction of the vehicles with
each other, such as one vehicle changing velocity affecting
others, stoppages and highway infra-structure make density
prediction, especially ahead in space-time, non-trivial.

We introduce the theory of traffic flow and consider the
simplest case, a single lane (scalar) linear traffic flow model.
Then we go onto derive the important conservation law. After
introducing the vehicle velocity we go on to show how the
relationship between vehicle velocity and density gives rise to
a non-linear relationship between the density and the traffic
flux. We then present two road examples and explain how we
solve simple road cases analytically and numerically to high-
light the central ideas. We show how traffic flow theory can
be used in modeling real road scenarios, how to parametrize
the model from real road conditions and importantly how to
apply the approach to VANET communications. Finally we
give two applications that can be easily constructed from the
density estimates we derive from the traffic flow theory.

1We denoted flow as a generic traffic term and flux as density × velocity.

II. RELATED WORK

The history of traffic flow lies with fluid dynamicists.
Whitam’s 1956 publication “Shock waves in the highway”
[Whi56] together with the work with Lighthill “On kinematic
waves” [LW55] showed that traffic flows can be treated in
a similar way as in gas and water flows had been. It was
later shown that traffic jams displays sharp discontinuities,
whereby a correspondence exists with shock waves seen in
nature [Pet72]. A traffic flow approach has been presented
in [BNP06], but does not consider a communications setting.
In the field of mobile ad-hoc networking Gupta and Kumar
present for statically identical randomly located nodes, the
throughput obtainable for a source-destination (S-D) pair for
a randomly chosen position is O( 1√

n
) [GK00]. Grossglauser

and Tse extended this work by including independent node
mobility, the average long term throughput per S-D pair
can be kept constant as the number of nodes per unit area
n increases, i.e. O(n) [GT02]. Pishro-Nik et. al provide a
general framework to study the fundamental capacity limits
of VANETs and show that (indeed) road geometry affects the
capacity and connectivity of VANETs and are Θ( 1n ) for a

single road and Θ

(
1√

n ln(n)

)
for a grid-like road structure for

a S-D pair [Hos07]. A probabilistic (percolation) analysis on
vehicle clustering and connectivity is presented in [KPD+08].

III. A TRAFFIC FLOW MODEL

A. A simple conservation law

Let ρ be the density of vehicles at a fixed location and time
ρ(x, t). The flux of vehicles is denoted q. The number passing
a fixed point x at time t is q(x, t). A positive value of q(x, t)
indicates the flux is in the direction of increasing x. The flux,
density and velocity of the vehicles are related by

q(x, t) = ρ(x, t) · u(x, t) (1)

It is important to state that the variables above are all functions
of two variables, both x and t. These and other variables are
shown in table I. We now consider the number of vehicles N
on a road segment [a, b] given by

N =

∫ b

a
ρ(x, t) dx (2)

which is the integral of the traffic density. The number of
vehicles between a and b may change due to the in and
out flows. We allow the number of vehicles crossing the



2

TABLE I
VARIABLES USED IN THIS WORK

Entity Notation
Flow q
Density ρ
Initial density ρ0
Wave speed density c
Velocity u
Space x
Position of vehicle n xn

Time t
Number of vehicle N
Length of vehicle L
Road section length D
Road section [a, b]

boundaries a and b to be variable i.e. q(a) and q(b). The rate
of change in the number of vehicles is thus given by

dN

dt
= q(a, t)− q(b, t). (3)

The quantity flowing into b and has a negative sign. Although
we don’t include bidirectional traffic in this paper, by choosing
the flux signs for flows in and out of [a, b] we can include flow
in either direction. By combining (2) and (3) we obtain

d

dt

∫ b

a
ρ(s, t)ds = q(a, t)− q(b, t). (4)

If we consider the conservation law on the interval [a, x] where
a is constant and fixed road position and x is an independent
variable anywhere on the road section, we obtain

∫ x

a

∂ρ

∂t
(s, t)ds = q(a, t)− q(x, t). (5)

We can replace the b in (4) by x in (5) as the position can be
anywhere on the road and differentiating with respect to x we
obtain

∂ρ

∂t
= − ∂q

∂x
(6)

∂ρ

∂t
+

∂q

∂x
= 0, −∞ < x < ∞, t > 0, (7)

with the initial condition

ρ(x, 0) = ρ0(x).

We must include choose values for the initial condition of a
differential equation, as it space-time trajectory will depend on
the choice. In numerical methods too and in real road tests,
measure/estimate the relevant traffic parameters. Continuing,
in simpler notation, (7) can be written

ρt + qx = 0. (8)

which is the differential form of the conservation law. The
equation expresses the fact that changes in the number of
vehicles are only due to the flow across the boundaries if
the right hand side (RHS) is zero. Note that the number of
vehicles in the region [a, b] is not constant. If that were true,
q(a, t) = q(b, t) or d

dt

∫ b
a ρ(x, t)dx would be 0 and this is

not the case. Thus far we assume that no vehicles enter or
leave the road section except at the entrances and/or exits,
i.e. there are no side roads. Importantly this conserves the
number of vehicles in the region and the law derives its name
from this principle. Note also there is a velocity associated
with the vehicle density as well. That is the density profile
can be observed to move when for example a lead vehicle
in a formation brakes, and a change in the vehicle separation
appears to move backwards.

B. From conservation to flow
Now we need to be able to solve the conservation law

(8) for different road conditions. We start with the simplest
linear case. It describes an initial wave profile traveling with
a constant velocity c along a road. A profile in this context
means an initial measurement or model of the traffic at the
entrance of a road section.

ρt + cqx = 0, x ∈ R, t > 0 (9)

ρ(x, 0) = ρ0(x) (10)

Going back to equation (1) we know that the flux is related to
the density q(x, t) = cρ(x, t) where the velocity of the vehi-
cles in this case is considered as a constant (c). The solution
to this particular initial value problem is straightforward, the
wave profile is the original one shifted forward in space and
time for a positive c, i.e. ρ(x, t) = ρ(x− ct). That is for any
initial profile after some time, the initial profile would be the
same across the whole road section.

C. Density dependency
It is reasonable to expect the velocity of a vehicle to be a

function of the local density i.e. u = u(ρ), in fact it decreases
monotonically with increasing density, the more vehicles in
a region, the lower the average velocity. This is intuitive as
vehicles must slow down in higher density traffic and is shown
in the left plot of figure 1. Note also the flux q of a traffic
flow will be a function of the density as well since q = u · ρ

q = q(ρ), q(ρ) = ρ(1− ρ). (11)

Since we defined the flux as the product of the velocity and
the density. When the density is at a minimum (ρ = ρmin = 0)
the flux is zero, since there are no vehicles to constitute a
flow. Conversely, when the density is maximum (ρ = ρmax)
vehicles are queued up back to back i.e. no movement, and
again there is no flux. The two cases are shown in the center
plot of figure 1 with a maximum where there is some density
and some velocity. Continuing on, we have

∂ρ

∂t
+

∂

∂x
(q(ρ)) = 0 (12)

and by the chain rule
∂q

∂x
=

dq

dρ

∂ρ

∂x
(13)

The conservation law now becomes
∂ρ

∂t
+ q′(ρ)

∂ρ

∂x
= 0 (14)
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Fig. 1. The fundamental diagram of road traffic. Left the velocity as a
function of density. Center the flux (vehicles/hr) as a function of density
(vehicles/km). Right the derivative dq

dρ wrt density.

∂ρ

∂t
+ c(ρ)

∂ρ

∂x
= 0 (15)

The conservation law is now non-linear due to the wave
velocity’s dependence on the density ρ. We will now see how
to solve the linear and non-linear cases with a mechanism
which converts the partial differential equation into an ordinary
differential equation, called the method of characteristics.

D. The method of characteristics
In the linear case we had

∂ρ

∂t
+ c

∂ρ

∂x
= 0. (16)

Looking at the solutions of equation (16) along a specially
chosen line x = x(t) gives solutions ρ(x(t), t). Differentiating
this with respect to t we obtain

dρ

dt
= ρx

dx

dt
+ ρt

dt

dt
(17)

which is known as the total differential. Should dx
dt in (17)

equal c in (16) then

dρ

dt
=

∂ρ

∂x
· c+ ∂ρ

∂t
= 0 (18)

along the line x(t). This means that ρ is constant along any
such line for an observer moving with speed c. By integrating
dx
dt = c with respect to t we obtain x = x0 + ct. The
lines of constant density at different constants x0’s are called
characteristics and are shown in the right hand plot of figure 2.
The characteristic gradient is + 1

c for positive gradients. Note
that the gradient is the reciprocal of c as we using t versus x.

x

t

(x0, 0)

(x(t), 0)

x

t
(x, t)

p = p(x − ct)

x0 = x − ct

Fig. 2. Left: Specially chosen curve (x(t), t) in the xt plane where the
density is constant. Right: Characteristics x = x0 + ct of the equation ρt +
cρx = 0 equation (16) .

E. The linear case
As an example consider the following conservation law:

ρt + 4ρx = 0, −∞ < x < ∞, t > 0

With wave profile, i.e. the initial conditions

ρ(x, 0) = arctan(x)

Along a curve (x(t), t), the derivative of ρ(x(t), t) is

d

dt
ρ(x(t), t) = ρx(x(t), t)

dx

dt
+ ρt(x(t), t)

Picking x(t) to satisfy:

c =
dx

dt
= 4, x(0) = x0

so ρ(x(t), t) has a constant value along x = 4t+ x0. At any
point (x, t) the characteristic line through this point extends
back to (x0, 0) on the x-axis where x0 = x − 4t. Since ρ is
constant along this characteristic, the value of ρ at (x, t) is:

ρ(x, t) = ρ(x0, 0) = arctan(x0) = arctan(x− 4t)

The solution of the initial value problem is a traveling wave
with profile arctan(x) moving with velocity 4.

F. The non-linear case
We now turn to the non-linear case, which has a dependence

on ρ. But whatever the characteristic ends up being, its value
will still be constant along the curve (x(t), t)

ρt + c(ρ)ρx = 0, ρ(x, 0) = u0(x), −∞ < x < ∞, t > 0

The characteristic starting at (x0, 0) is found by solving

dx

dt
= c(ρ(x, t)), x(0) = x0.

d

dt
ρ(x(t), t) = ρt(x(t), t) + ρx(x(t), t)

dx

dt

= ρt(x(t), t) + c(ρ(x(t), t))ρx(x(t), t) = 0

The value of ρ along a characteristic is still constant. The use-
fulness of characteristic depends on this property in converting
PDEs to ODEs.

G. A traffic light example
Traffic is lined up behind a red traffic light, positioned x =

0, bumper to bumper implies ρ = ρmax for x < 0, and there
is no traffic ahead of the light ρ = 0 for x > 0. We need to
solve the following:

∂ρ

∂t
+

∂q

∂ρ

∂ρ

∂x
= 0

with the initial conditions:

ρ(x, 0) =

{
ρmax if x < 0
0 if x > 0

Using characteristics, the density propagates at a velocity
dq/dρ. If the density ρ remains constant, then the density
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moves with constant velocity. The characteristics are straight
lines in the xt plane:

x =
dq

dρ
(ρ)t+ k

Each characteristic may have a different integration constant
k. Looking at all the characteristics that intersect the initial
data at x > 0, there ρ(x, 0) = 0. Thus ρ = 0

dx

dt
=

dq

dρ
(at ρ = 0) = u(0) = umax

which means:

x = umax + x0(x0 > 0)

And it is possible to calculate the waiting time for the nth

vehicle as

t =
(n− 1)L

−ρmaxu′(ρmax)

u′(ρmax) ≈
δu

δρ
=

−6 km/hr
60 vehicles/km

= −0.1
km2

car · hour

For each vehicles behind the light, the waiting time is

t =
L

−ρmaxu′(ρmax)
=

1

−ρ2maxu
′(ρmax)

=
1

0.1 · (225)2

which is ≈ 0.7 secs. This shows us how we can calculate
traffic densities in space-time.

H. Shockwaves

An important concept in all fluid flow work is that
of shockwaves. The occur in road situations where
differing densities exist along a road section and the
characteristics may become multivalued. This occurs when
faster lighter moving traffic “catches up” with slower
moving higher density traffic ahead of it. An example of
the how the velocity of vehicles is related to the density
waves can be seen in the New Scientist publication video
http://www.youtube.com/watch?v=Suugn-p5C1M.
The speed of the resulting density waves is always less than
the velocity of the vehicles, as seen by:

c =
dq

dρ
=

d

dρ
(ρu) = u+ ρ

du

dρ
(19)

c < u only if
du

dρ
≤ 0 (20)

This implies that drivers always react to changes in density
ahead of their current position and not behind. Vehicles in
a congested region have large densities in their vicinity and
consequently must move slowly. This is akin to sudden large
densities occurring in “flash” traffic situations.

IV. A GENERAL NUMERICAL TECHNIQUE

To solve non-linear PDEs (with shockwaves) we need to
consider the integral conservation law rather than the differ-
ential law. The reason being that numerical solutions may not
be found at all points along the road. Note it is generally
very difficult to predict shockwaves as they depend on the
initial density, road parameters and where the changes in
density profiles occur in space-time. One form of the integral
conservation is given by (21).
∫ b

a
ρ(x, t2)dx =

∫ b

a
ρ(x, t1)dx −

∫ t2

t1

f(ρ(b, t))dt +

∫ t2

t1

f(ρ(a, t))dt

(21)

A. A simple numerical algorithm

We need to be able to calculate the density over the road
section. Since partial derivatives are limits of difference quo-
tients, forward and backward approximations can be calculated
numerically, as shown in equations (22) and (23) respectively.
They are derived directly from the integral form of (21). Note,
we may need the forward and backward forms for numerical
stability.

∂ρ

∂tn
≈

ρ(xi, tn + k) − ρ(xi, tn)

k
,
∂ρ

∂xi
≈

ρ(xi + h, tn) − ρ(xi, tn)

h
(22)

∂ρ

∂tn
≈

ρ(xn, ti) − ρ(xn, ti − k)

k
,
∂ρ

∂xi
≈

ρ(xi, tn) − ρ(xi, tn − h)

h
(23)

The above form can be manipulated algebraically to give

ρ(xn, ti + k) = (1− ck

h
)ρ(xn, ti) +

ck

h
ρ(xn − h, tn). (24)

We use the xn and ti values separated by h and k in the
numerical aspects (next section) of this work, by employing
Godunov’s algorithm, which we do not explain in more detail
due to space constraints.

B. Traffic flow parameters

We will consider the traffic at the start of a 2km road. We
specify the maximum density ρmax of 500 (2000 / 4) and the
maximum velocity of 120 km/hr. For the cell size we selected
20m (△x) to match Bluetooth’s coverage which is also five
times the length of an average family saloon. These values
simply reflect the road distances and physical connectivity
relationships with respect to wireless communication and can
of course be selected as needed. The inflow to the road section
will be of two types from this point in the paper i) vehicles
behind a stoppage. A condition such as a traffic light at the
beginning or end of a road stretch is known as a boundary
condition. We consider waiting times of 30, 60 and 120
seconds. At an arrival rate of 1 vehicle per km there would
be 30, 60 and 120 vehicles respectively behind the lights. ii) a
more constant stream of heavy (0.8·ρmax), medium (0.5·ρmax)
and light (0.2 ·ρmax) stream entering the road section at a. We
have introduced a small amount of randomness into this stream
to reflect that the vehicles are not exactly equally spaced.
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C. Examples
Examples of the density variations (over distance) are shown

in figures 3 and 4. Figure 3 illustrates a situation where
vehicles are backed up behind a traffic light and five seconds
later, the light turns green. The initial density profile changes
from the initial step form on the left to the one shown on
the right, as vehicles in front can accelerate away whilst those
behind must start slower. In figure 4, we have the opposite
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Fig. 3. Left: Initial step density Right: 5 seconds later.

case, the density changes from low to high as modeled by
the function arctan(·), in this case the faster moving waves
catch up to the slower moving ones in front and a step density
profile develops. arctan(·) is such a function that represents
such a smooth transition from low to high densities as shown
to illustrate the earlier example. It is important to point out
any function (analytic or empirical) may be used.
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Fig. 4. Left: Initial low-high density Middle/Right: 5 and 15 seconds later

V. V2V COMMUNICATIONS

A. Information propagation
We now show how to use traffic flow density calculations in

VANET communications. Three applications have been chosen
for this first part, based on [Du08].

1) The level of connectivity is defined as the relative time
during which adjacent cells are connected.

2) Reachability defined as the probability that every two
vehicles in the network are connected (clearly coverage
dependent)

3) Broadcast capacity, defined as the maximum number
of successful concurrent transmissions over the road.

B. Generic algorithm
P̄ ← P

ρmax
◃ Normalize P wrt the maximum density

Ni ← P̄ · dcov()
L

P̃ ← round(Ni) ◃ Obtain the no. of vehicles per cell

for all △t do
if (∃ active cells) then

Partially connected
end if
if (ρ ≥ 1) then

reachability ← count adjacent cells
end if
broadcast capacity ← max. of 2 adjacent cells

end for

C. Connectivity

Using the algorithm to process the density matrix we can
obtain connectivity results in table II. Unsurprisingly the
coverage is higher for 802.11a, however the actual percentage
coverage have been calculated using the method described. We
emphasize the application of the theory is simple, once the
density matrix is obtained. We will use the connectivity later
on too. A connectivity analysis is important in most mobile
ad-hoc networks.

TABLE II
CONNECTIVITY FOR STEP & CONSTANT INITIAL CONDITIONS

Stop Duration Bluetooth 802.11a Traffic Proportion to Bluetooth 802.11a
time (seconds) coverage coverage flow to ρmax coverage coverage
Short 30 3% 24% Light 0.2 4% 26%
Med. 60 6% 32% Medium 0.5 17% 39%
Long 120 12% 45% Heavy 0.8 56% 74%

D. Reachability

In terms of reachability a critical amount of traffic is needed
for the clusters to form for 802.11a and Bluetooth as shown
in table III. Naturally, the longer the traffic is queued, clusters
form more easily as is also the case for denser traffic entering
the road section under consideration. Reachability, particularly
the maximum and minimum values are important in Delay
Tolerant Network (DTN) applications, even in V2V situations.

TABLE III
REACHABILITY FOR STEP & CONSTANT INITIAL CONDITIONS

Stop Duration Bluetooth 802.11a Traffic Proportion to Bluetooth 802.11a
time (seconds) reach. reach. flow to ρmax reach. reach.
Short 30 1% 24% Light 0.2 0% 25%
Med. 60 2% 32% Medium 0.5 33% 37%
Long 120 10% 45% Heavy 0.8 70% 73%

E. Broadcast capacity

The value for broadcast capacity are shown in table IV. The
broadcast capacity of the network is important when trying to
reach a set of nodes simultaneously. In the case where only one
node has particular information to disseminate, the broadcast
capacity will be utter importance. Note, the information may
be data or control information, for example to synchronize an
action across a set of nodes.

VI. APPLICATION: RADIO TECHNOLOGIES

To show one application of this work in a radio context, we
use data as given in in table V.
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TABLE IV
BROADCAST CAPACITY FOR STEP & CONSTANT INITIAL CONDITIONS

Stop Duration Bluetooth 802.11a Traffic Proportion to Bluetooth 802.11a
time (seconds) broadcast broadcast flow to ρmax broadcast broadcast
Short 30 0.8% 4% Light 0.2 1% 15%
Med. 60 1.2% 12% Medium 0.5 2.5% 27%
Long 120 2% 15% Heavy 0.8 4% 33%

TABLE V
TRANSMISSION PROPERTIES FOR TWO POPULAR TECHNOLOGIES

Typical Coverage Transmit Transmit Antenna
Technology Subclass Range (meters) power power gains

(meters) (dBm) (mW) Gt and Gr (dBi)
Bluetooth Class 1 10 20 4 2.5 3
802.11a Outdoor 120 240 27 500 5

a) Path loss: The path loss, or attenuation, is an impor-
tant factor in all wireless communication (25),

Pr(dB) = −10log10

[
PtGtGrλ2

(4π)2(d+ L)γ

]
. (25)

Pt is the transmission power, Gt is the gain of the transmitter,
Gr the gain of the receiver, λ the wavelength of the carrier, d
is the distance between transmitter and receiver, γ is known
as the path loss exponent which is related to the vehicle
density. Where there are two vehicles and no more (i.e. LOS)
within a coverage distance means we can calculate the received
signal from equation (25) directly. Where however, there are
intervening vehicles we must use a higher path loss exponent
(γ). In received signal estimation a value of 2 is often chosen
for the LOS case. In the case of none-LOS where vehicles
attenuate signals, the literature [OBB09] suggests using values
of in the range [2.5, 4.8]. Figure 5 shows the path losses for
a LOS and NLOS case derived from light and heavy initial
densities over a 150m road section.
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Fig. 5. Path loss for LOS (upper) and NLOS (lower) V2V communication

b) Interference: A standard interference model for wire-
less communication is is known as the Signal to Interference
plus Noise Ratio (SINR) model [GK00]. The model depends
on the strength of the received signal. The other vehicles
contribute to the interference as well as the ambient noise
level (N ). For a sender-receiver pair ki = (si, ri), they use
Iri(sj) = Pri(sj) for other senders sj sending at the same
time as si to model the signal power transmitted by sj is seen
as ri as interference. The total interference Iri(K) experienced
by a receiver ri is the sum of the interference power by the set
K of nodes transmitting at the same time, minus the sender of

course. N is the ambient noise power level. Then, ri receives
si transmission iff:

SINR(ki) =
Ptri(si)

N + Iri(L)
=

Pt(si)
d(si,ri)γ

N +
∑

j≠ i
Pt(sj)

d(sj ,ri)γ

≥ α (26)

Where α ≥ 1 is needed for successful reception. All we
need to know is the ki pairs within coverage distance. This
we have from the connectivity matrix P . Therefore it is
straightforward to extract the pairs than can reach other. γ
will depend on the number of intervening obstacles, but that
is simply P̃ in the method we have presented in section V-B
of this paper.

VII. CONCLUSIONS

The focus of this paper has been very much on the applica-
tion of traffic flow theory to VANET connectivity analysis. Its
greatest strength is the ability to prediction of density changes
in space and time. Importantly this work places little restric-
tions on the distribution of vehicles. We have shown, that once
the densities have been found it is relatively straightforward
to calculate other features of VANETs. We have chosen to
show the connectivity, reachability and broadcast capacity but
also line-of-sight and non line of sight cases and path losses
including interference from dense traffic. This is not easy to
include with a microscopic modeling approach. This work can
also be extended to include roundabouts, intersections and
even the case where traffic leaves and enters a road section
by considering the right hand side of (8) as non-zero. We
acknowledge the Portuguese Foundation for Science and Tech-
nology under scholarship number SFRH/BPD/65961/2009.
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