Dimensionality reduction in (large) measurement
datasets

Abstract—Modern network measurements may contain hard
to discern facets. Dimensionality reduction is one method to
emphasize and reduce features that are hard to find in raw data,
2D plots or summary statistics.

This is because network features are often derived from basic,
measurable entities, for example, quality might be a function
of the delay, loss, access technology or the environment. Some
features may be coupled, for example network load and server
response times may be related in complex ways. Consequently,
we evaluated four dimensionality reduction techniques based on
clustering: Principal Component Analysis, Kernel PCA, Linear
Discriminant Analysis, and t-Distributed Statistical Neighbour
Embeddings.

We measured network attributes during the most-viewed
boxing match streamed from three globally accessible servers.
We measured the network and server delays, the packet loss.
The access technologies were WiFi and Ethernet from two envi-
ronments, home and work. The four algorithms were evaluated
in terms of clustering or separation visualisation and CPU and
memory performance.

Index Terms—Machine learning, measurements, dimensional-
ity reduction.

I. INTRODUCTION

Dimensionality reduction has been widely applied in many
fields. Reduction techniques have been used to lower the
amount of data from the original dataset and leave only the
statistically relevant components in the (output) processed
data. Dimension reduction also improves the performance of
classification algorithms, as it removes noisy irrelevant data
points. It also allows for improved visualisation of complex
measurement data sets. In the ML community, dimensionality
reduction is also known as feature extraction/selection.

In large sets of network data, we also want to quantify the
major statistical contributors and their interaction. This inter-
action can be broadly considered as the covariance between the
measured entities. In a networked setting, covariance can arise
as coupled delays, which we will explore in Section III-A.

Measurement data typically has many thousands of data
points, but not many explicit features. Implicit features, often
hidden, such as the network load are embedded into the mea-
surements. The captured environment constitutes an important
feature of networked measurements. In contrast, the number of
features in image processing can be in the tens of thousands,
but fewer implicit features and data points.

Our contribution is a performance and visualisation evalu-
ation of four dimensionality reduction techniques using mea-
surement data from a popular sporting event.

Method | Type Para- Para- Compl. | Mem.
metric | meters

PCA Linear | No - o(D?) | O(D?%

kPCA Non-lin. | Yes k(-,-) O(N?) | O(N?)

LDA Linear No - - -

t-SNE | Non-lin. | Yes Perp(-) | O(N?) | O(N?)

TABLE I: D is the dim. of the measurement space, N is the
number of data points. P = O(ND + MT + DT), where
T = min(N, D), and k() is a kernel function.

II. FOUR TECHNIQUES
A. Rationale and evaluation

We chose PCA as it is ubiquitous in dimensionality reduc-
tion, it is computationally efficient, linear and parameterless. It
has many variants, kernel, probabilistic, discriminant, see the
PCA-specific book [1]. PCA essentially works by separating
points as far as possible based on the highest varying field.
Kernel PCA performs analysis in the high dimensional space
using a kernel function to find the principal components, see
Table I. LDA is also closely related to principal component
analysis and factor analysis in that they both look for linear
combinations of variables that best explain the data. t-SNE
uses a non-linear clustering algorithm, which has proved
popular in image analysis. We devote a little more space to
t-SNE in how it works [2].

B. Principal Component Analysis (PCA)

PCA is a linear variance-based method for reducing the
dimensionality of data. It uses an orthogonal transformation
to convert a dataset of correlated variables, into a set of sorted
values of linearly uncorrelated variables, called the principal
components [3]. The transformation ensures the 1st component
has the largest variance, the 2nd the next highest variance,
and so on. The number of principal components will always
be less than (or equal) to the number of original features
or measurement attributes. Dimensionality reduction allows
features that contribute little to the dataset to be removed.
A visualisation is shown in Figure 1 (left).

C. Kernel PCA (kPCA)

Is an extension of PCA using linear algebra’s kernel meth-
ods. A kernel, known as the nullspace, is the set of vectors in
the domain of the mapping which maps to the zero vector.
They are key in inverting matrices, a fundamental linear
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Fig. 1: Left: In PCA the component lengths represent their
relative contributions, and the angle between them their corre-
lation see also Figure 4. PCA tries to maximise the component
axes. Right: LDA tries to maximise the axes separation for
class separation.

algebra operation. Formally, let 7' : V' — W be a linear
transformation between vector spaces:

ker(T) =T71(0) = {v € V|Tv = 0}.

Kernels are used in SVMs, popular in machine learning and
in kernel density estimates, and a continuous function rep-
resenting a discrete histogram. Notably, KPCA nonlinearises
the linear dimensionality reduction method by calculating the
images of the pairs of data rather than the real values, saving
computation, known as the kernel ’trick’. That said, the kernel
has to be chosen carefully, to prevent variations in the data
appearing as the same, which cannot happen in PCA as the
eigenvalues are used to rank the eigenvectors based on their
variation in vanilla PCA.

D. Linear Discriminant analysis (LDA)

LDA is also closely related to principal component analysis
(PCA) and in that it looks for linear combinations of variables
that best explain the data [4]. It estimates the probability that a
new set of inputs belongs to every class. The output class is the
one that has the highest probability. It also explicitly attempts
to model the difference between the classes of data. PCA, in
contrast, does not take into account any difference in class.
LDA works when the measurements made on independent
variables for each observation are continuous quantities. We
also make use of LDA’s categorical independent variables, in
our case the access types (Ethernet / Wifi and Home / Work).
LDA is shown in the right illustration of Figure 1.

E. T-distributed stochastic neighbourhood embedding (t-SNE)

t-SNE is a non-linear algorithm for clustering high di-
mensional data by projecting each measurement point onto a
lower dimensional (LD) scatter plot [S]. On a low dimension
visualisation, the similarities and differences of the highly
dimensional measurement space may allow data exploration
and analysis. The LD map is optimised by shifting points
using the well known gradient descent, a Ist-order iterative
algorithm. The t-SNE algorithm is shown in algorithm 1.

Algorithm 1 Point placement in the LD map.
: Data: X = {z1,29,...,2n}

: Parameters: Perp, T, 1, a(t)

: Result: YT = {y1, 95, ..., yn}

O I S

: Compute LD affinities g;;
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: sample Ygo) — {y1,y2, ..., yn } from N(0,10741)

: for for t=1 to T: do

Compute p;|; using data and Perp

Compute gradient 2%
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end

III. DATASET - FIGHT OF THE CENTURY

A boxing match between Floyd Mayweather (USA) and
Manny Pacquiao (Philippines) took place in Las Vegas, May
2015. 10 hours of measurements were taken compromising
40K data points. Three selected endpoints are shown in Table
Il. Traceroute was used as a reachability tool to record

Philstar Showtime Sky
Domain philstar.com | sho.com sky.com
Role News & US cable UK-based
entertain. & entertain. | & entertain.
portal network network
Server Arizona, Amsterdam, | Amsterdam,
location USA. NL. NL.
CDN Own
provider (on prem) Akamai Akamai
Time
difference | -7 +1 +1

TABLE II: Three globally accessible streaming sites measured
using four nodes on the CheesePi platform.

the number of Internet hops, before and after the event. IP
delays were recorded with ping, and the front-end server
responses with httping. It records the round trip times for
GET requests to the remote webservers. We also recorded the
packet losses as well as the access location and technologies.
’Academic’ was a node on the Swedish academic network
connected to peers in Europe and the US, it is rarely over-
loaded!. "Home’ is a student residence, prone to occasional
overloads, including frequent 802.11 interference.

A. Example - coupled delays

Delays arising from a network and a server interact. A
loaded network will result in longer response times from a
server, and a busy server will produce longer latency for the
network. From an external measurement perspective, these
delays might be indistinguishable and change in contribution
over time. Systems theory, stability, and coupled systems have
a rich history [6]. We will see that the major feature is the
delay, and its second moment, variance. in Figure 2 we see
how the delays both increase toward the event, the variance

Uhttp://stats.sunet.se



# Feature Philstar Showtime Sky

1. #hops 12 8 9

2a. | Net. delay 19636 ms 2942 ms 243 ms

2b. | Serv. delay 418+128 ms | 79+£130 ms 24462 ms
3. Loss 3% 0% 0%

4a. Acad. over Eth. 4184+128 ms | 794130 ms 24462 ms
4b. | Acad. over WiFi 634+315 ms 154475 ms 6214456 ms
Sa. | Home over Eth. 351£227 ms | 75£105 ms 19+86 ms
5b. | Home over WiFi | NA 108£203 ms | 48+221 ms
Sc. | All active 536301 2454312 ms 1154250 ms

TABLE III: Rows 1-3 the numerical measured network fea-
tures, their means and standard deviations, 4-5 the environ-
mental and access technolgies to the sites gievn in Table II.

in the server increases and the systems are indeed coupled.
Clearly, the average delay is due to the network however, the
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Fig. 2: 24-hour server latency measurements to three streaming
sites during the boxing match, measured from a Swedish
academic site using Ethernet access.

variance in the delay is due to the server response. To quantify
the contributions of the network and server, a scatter biplot of
the delay values in the PCA space is shown in Figure 4.

From the whitened, average removed and standard deviation
normalised, data, and components overlaid, one can see the
contribution of two delay components. Both are positive,
showing the server (HTTP) delay being four times that of the
network (IP) delay.

IV. RESULTS
A. Visualisation effectiveness

Using dimensionality reduction techniques it is possible
to shed light on complex measurement paths and varied
environments. Where the values in the covariance matrix are
similar (network ’similarity’) the points in the visualisation
will be close or even overlap. Where there is a significant
difference in the measurement space, this should be visible
too. Visualisations in this work expose groupings of servers
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Fig. 3: 24-hour server and network latency measurements
to the Philippines server only. The server contributes higher
delay, but significantly higher variance.
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Fig. 4: Scatter biplot of a delay experiment showing the net-
work (Ping) and server (Httping) to a server in the Philippines
from Sweden. Individual measurements are in numerals. The
lines are the two principal components for each measurement
attribute.

for the event, as can be seen in the time series plots. Note, the
data is whitened, meaning distributions are shifted and scaled
to have zero mean and unit covariance. No information is lost
in this process, but it is necessary to compare the techniques
presented here. Normalisation is an important step in machine
learning.

Figures 5 and 6 show PCA and t-SNE applied to our
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Fig. 5: PCA visualisation of the five-featured boxing measure-
ments (parameterless).
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Fig. 6: t-SNE visualisation of the five-featured boxing mea-
surements (using a perplexity of 20).

data, all measurement attributes in Table II were used, and
combinations of the environment and technology from Table
III. We ran measurements from the environment and tech-
nology simultaneously, to correlate the path, location, access
technology and measurement environment.

The method of selecting points according to their neigh-
bours, results in clearer separation. A central mass according
to the student-t distribution could be identified either by eye or

by a clustering method such as Kmeans. Note, at the edges of
the groups, there is some bleeding of the measurement points
into the groups of the other clusters than they could belong.
These are not necessarily errors, especially in the Showtime
and Sky cases, but should be looked at in more detail.

B. Runtime performance and memory usage

Performance and memory values are given in Table IV
below using R. The values are sensitive to settings such as
the kernel chosen in kPCA, grouping and methods in LDA as
well as the number of iterations in t-SNE.

Wall Normalised Actual Normalised
Method | clock time memory memory
time (s) | (unitless) (unitless)
Read 0.078 1 233 Kb 1
PCA 0.15 1.9 233 Kb 1
kPCA 55.62 713 2145 Mb | 94
LDA 31.53 404 47.22 Mb | 207
t-SNE 44.96 576 56.46 Mb | 248

TABLE IV: Normalised and actual execution times and mem-
ory usage. Normalisation is with respect to reading the data.

The values in the table do not include the actual plotting,
only the computation. The memory use is the size of the data
structures holding the 691k measurements”. not the allocation
and deallocation as the algorithm’s progress. This can be sub-
stantial, for t-SNE we had to increase the amount of memory
using R_MAX_VSIZE=100Gb to complete the processing, an
alternative is to use GPU processing [7].

V. RELATED WORK

We collate most dimension reduction works into three sur-
vey articles [8], [9], [10]. The author of the first one is also the
co-author of t-SNE. An approach that attempts to address the
problems of PCA-like approaches is Sammon mapping [11].
It alters the cost function of classical scaling by dividing the
squared error in the representation of each pairwise Euclidean
distance by the original Euclidean distance in the HD space. A
performance improvement for t-SNE, called Barnes-Hut, has
been suggested by its co-creator [5]. Internet measurements
by Crovella and Krishnamurthy consider embedding network
measurements into high dimensional metric spaces for analysis
[12]. Abrahao and Kleinberg looked at the dimensionality
properties of the Internet delay space, i.e., the matrix of
measured round-trip latencies between Internet hosts using
PCA and embedding spaces approaches such as t-SNE [13].

VI. DISCUSSION

1) Dataset size and the number of features. Networked
measurements often collect many data points. Whereas
data processing tools can handle large datasets, high
dimensionality mandates method-based approaches as
we shone some light on.

2) Method comparison. PCA, kPCA and LDA use a
Euclidean space for the low dimension visualisation,

2691k = 24 hours - 3600 secs - 2 (ICMP and Httping) - 2 access (Eth. and
Wifi) - 2 environments (Home and Work)



3)

4)

5)

whereas t-SNE uses a non-Euclidean space for the low
dimension visualisation. PCA cannot directly deal with
labelled data, or needs extra methods to deal with labels.
PCA and kPCA are unsupervised and cannot use class
information. Whereas LDA and t-SNE are supervised
techniques and can use class information, they provide
better visualisation at higher computation costs.

Model performance. Vanilla PCA is 70-580 times faster
than the other methods and requires 94-228 times less
memory. kPCA with its non-linear mappings can use
significant memory, but saves on cycles with the kernel
’trick’. LDA and t-SNE are CPU and memory demand-
ing. Classification is usually not needed with t-SNE, but
experimentation with its Perplexity parameter almost is.
For future work, this should be explored further.
Parameterisation. PCA is parameter-free and thus has
large advantage other the other methods. kPCA needs
a kernel parameter (e.g. Gaussian) which not only ef-
fects the running time and visualisation, can actually
misleading results. With complex data, kPCA requires
substantional exploration as detailed in this excellent
paper [14]. LDA requres the number of components as
a parameter (two as shown in Figure 1). t-SNE requires
at least one parameter, but also requires a number of
execution options, significantly effecting the running
time and visualisation appearance. An example is the
number of layout iterations shown. Since visualisation
is subjective, t-SNE allows for a number and the user
to select the most "attractive’. In this work we perfomed
only one iteration to be as fair as possible to the other
methods. In reality, a number should be selected.
Visualisation effectiveness. PCA, k-PCA ad LDA pro-
duce good visualisations, t-SNE probably the best over-
all (see our web site). Perplexity can range between 5-
50, where we found 20 to be acceptable for our data.
Visualisation aids help users how to utilise t-SNE.

VII. CONCLUSIONS

We have motivated, explained and compared four dimen-

sionality reduction techniques for the analysis of network data
in this relatively short paper. Such techniques have thus far
been quite overlooked in the networking community by resort-
ing to multiple 2D plots or summary statistics. Visualisation in
other communities, however, is very commonplace and useful.

The 4 techniques presented preserve all the measurement

[1]

correlations, but project them down into easier comprehend
two
dependencies, as shown in the example of coupled delays.
Generally, we found parameterless PCA to perform well, but
it is
one has categorical data.

dimensions. The techniques even help resolve complex

worthwhile experimenting with the others, especially if
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