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Installation



Open Gym basics I 

● There are two basic concepts in reinforcement learning: 
a. The environment

■ The outside world
b. The agent

■ The algorithm we are writing

● The agent sends actions to the environment, and the environment replies with observations 
and rewards (that is, a score).



 ⚙ ianmarsh@LightMan  ~/Downloads  python3.9

>>> import gym

>>> import matplotlib

>>> env = gym.make('Acrobot-v1')
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Hands on



Install I

Pip install gym

Or clone and local install

git clone https://github.com/openai/gym.git

cd gym

pip install -e .



Install II

Other packages: 

MuJoCo -> bullet 

https://gerardmaggiolino.medium.com/creating-openai-gym-environments-with-pybullet-

part-1-13895a622b24

OpenGL



Atari games



Open Gym principles

1. Environments, not agents. 

a. Two core concepts are the agent and the environment

2. Emphasize sample complexity, not just final performance

3. Encourage peer review, not competition

4. Strict versioning for environments



Atari I

import gym

env = gym.make('SpaceInvaders-v4') 

env.reset()

for _ in range(10000):

    env.render()

    env.step(env.action_space.sample())

env.close()



Atari II

import gym

env = gym.make('SpaceInvaders-v4') /* v0 avail also */ 

env.reset() /* reset env. */ 

for _ in range(10000):

    env.render()

    env.step(env.action_space.sample())

env.close()



AI gym verses DeepMind
Tech OpenAI DeepMind Notes

Goal Deep Reinforcement Learning 
environments 

Deep Reinforcement Learning 
algorithms 

Solution method Model-free RL
Tabular Q learning
& Trial and error

MCTS = Monte Carlo Tree Search 
+ Heuristics

Access Standardised AI

use of a separate target network — the 
Q_hat part of the above equation — to 
stabilize training, so the TD error isn’t being 
calculated from a constantly changing target 
from the training network, but rather from a 
stable target generated by a mostly fixed 
network.

Synchronous variant A2C, 
popularized a very successful 
deep learning-based approach 
to actor-critic methods.

Asynchronous Advantage Actor 
Critic (A3C)



Open Gym basics II

The core gym interface is Env which is the unified environment interface. There is no interface for 
agents; that part is for us. The following are the Env methods to know:

1. reset(self): Reset the environment's state. Returns observation

2. step(self, action): Step the environment by one timestep. 

○ Returns observation, reward, done, info.

3. render(self, mode='human'): Render one frame of the environment. The default mode will 

do something human friendly, such as pop up a window.



1. Hand-coded

■ Will implement game

■ But not RL package

2. Use a game package

■ MuZero (Deep Mind)

■ OpenAI’s Gym

■ Arcade learning ALE

3. Learning  alpha, gamma, and epsilon need to 

be provided in a control object in package

4. Maybe visualisation large square relax mode
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Implementation

https://arxiv.org/abs/1911.08265
https://www.oreilly.com/radar/introduction-to-reinforcement-learning-and-openai-gym/
https://github.com/mgbellemare/Arcade-Learning-Environment


Theory



Model-based and non-model based RL (wikipedia)

1. In RL a model-free algorithm does not use the transition probability distribution (and its reward 

function) associated with the Markov decision process which, in RL, represents the problem to 

be solved. 

2. The transition probability distribution (or transition model) and the reward function are often 

collectively called the model of the environment (or MDP), hence the name "model-free". 

3. A model-free RL algorithm can be thought of as an "explicit" trial-and-error algorithm. An 

example of a model-free algorithm is Q-learning.



Policies and system dynamics (model)

Reinforcement learning RL maximizes rewards for our actions. From the 
equations below, rewards depend on the policy and the system dynamics 
(model).

https://jonathan-hui.medium.com/rl-model-based-reinforcement-learning-3c2b6f0aa323

https://jonathan-hui.medium.com/rl-model-based-reinforcement-learning-3c2b6f0aa323


1. A rich history from stochastic processes

a. Conditional probability

b. Bayesian

c. Markov processes

d. Markov Decision Processes

e. Multi-arm bandits
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Pre Reinforcement learning



1. Agent is us, algorithm or ‘learning machine’

2. Policy learning

○ Stores local knowlege

○ Q(Statei , Actioni) 

○ Learn the function policy (called Q)

3. Feedback really comes via a reward (Ri)

○ Training at each step

■ (Si, Ai, Ri+1, Si+1) tuple

4. Environment

○ Randomly place or learn from humans
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Reinforcement learning



Q-learning and Deep Q-learning
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Learning from predefined observations

Useful when input data is pre-determined or we want to train an agent that 

replicates past behaviour. Here one just inputs a tabular data structure with 

past observations into the RL package. Could be from an external source, 

and doesn’t need further interaction with the environment.



environment <- function(state, action) 
{

  ...

  return(list("NextState" = newState,

              "Reward" = reward))

}
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Learning from an interactive environment

Mimics the behaviour of the environment. Agent samples experience from 

this function. Takes state-action pair as input, returns a list of the name of 

next state and reward. Collect random sequences from it, e.g. 1000.
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Explore Versus Exploitation 
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Learning policies high level

Policy

Value action

Value-based Policy-based

Actor-critic



1010 Crazy!



1. Addictive, beware 💆
2. 10 x 10 board
3. Complete lines, horizontal or vertical
4. Points for #squares in each piece 

placed + bonus of 10 for completed 
lines

5. 14 random generated shape-rotation 
pieces

6. Human scores 
○ 14634 mine, good 194727
○ Task is code RL to beat me 👻

25

1010 Crazy!



1. Cost function that maximises score

○ Or number of pieces placed

2. Strategy that completes lines (obv)

○ Or sizeof contiguious regions

3. Rewards at each step based on points

○ Or blocks (ready to be ‘finished’)

○ Cf. Left and right pics
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Intuition



Supplements



1. Policy gradients
■ Hado (deep mind) 

https://www.youtube.com/watch?v=bRfUxQs6xIM 

■ Books
● Reinforcement Learning : An introduction (Sutton)
● Oreilly - Reinforcement Learning Industrial Applications of 

Intelligent Agents (Winder)
● Grokking - Deep Reinforcement learning (Morales)
● Pakt - Deep Reinforcement Learning with Python 

(Ravichandiran)
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Videos

https://www.youtube.com/watch?v=bRfUxQs6xIM


Papers

OpenAI Gym 

https://arxiv.org/pdf/1606.01540.pdf 

Reinforcement Learning, Bit by bit

https://arxiv.org/abs/2103.04047

Blogs

● https://towardsdatascience.com/reinforcement-learning-with-openai-d445c2c687d2

https://arxiv.org/pdf/1606.01540.pdf
https://towardsdatascience.com/reinforcement-learning-with-openai-d445c2c687d2

