
A traffic flow analysis of VANET communication

Ian Marsh
Swedish Institute of Computer Science

Better said as “SICS”

1/1



Disclaimer!

2/1



The big picture
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Motivation for this work

I Internet is here, so are vehicles!

I Vehicular to vehicular (V2V) and vehicular to infrastructure
(V2R) touted as the next large major deployment

I Communications protocols have been deployed (via verde) and
are actively being developed

I The deployed driven by real needs
I Safety (inform of crash ahead)
I Management (heavy loads ahead)
I GPS augmentation (position known, but density isn’t)

I Cellular access (3G) is not always sufficient:
I Path of communications can be too slow for some applications
I Vehicle → infrastructure to computing center → redistribution
I Spectrum → message redistribution costly (Hz, Euro)

I Problem combines application and theory (cross disciplinary)

I Relatively novel

I Pretty complete from problem formulation to implementation
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Outline
I Part I:

I Main variables
I Differential conservation law of PDEs
I The method of characteristics I
I Nonlinear first order differential equations
I The method of characteristics II
I Shockwaves
I Integral conservation law
I Numerical solutions of non-linear PDEs
I Godunov’s algorithm
I Parametrization of model

I Part II:
I Radio environment
I Object shadowing
I Example of connectivity results
I Cluster analysis

I Part III:
I Further work (incl. sidestepped mathematics)
I Conclusions
I Small demo
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Part I: Traffic flow
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Assumptions

I Vehicles are the same → cars of 4m in length

I The vehicle position is its center (antenna is there anyway)

I Vehicles cannot overtake
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Traffic flow variables
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The static density is

ρ =
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n=1

n

D
,

i.e. cars per km.
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Traffic flow entities

I ρ is the density of vehicles per unit length

I q is the flow (or flux) of vehicles per unit time

I u is the velocity of vehicles

I ρ, q and u are functions of 2 variables location and time (x, t)

I At time t the net rate flowing into D is rate flowing into x = a minus the rate
that is flowing out at x = b

I Aq(a, t) if we consider a surface A, we use a 1 dimensional model (A = 1)

I The flow, density and velocity of the vehicles are related:

I q(x , t) = ρ(x , t) · u(x , t) or u(x , t) = q(x , t)/ρ(x , t)

I N is the number of cars in the road interval

I Conservation law: Through the entrance or exit only may cars enter or leave
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A linear conservation law I
The number of vehicles (N) on a road segment [a, b] given by

N =

∫ b

a
ρ(x , t) dx

The rate of change in the number of vehicles on the stretch is given by

dN

dt
= q(a, t)− q(b, t).

By the conservation law these should be equal

d

dt

∫ b

a
ρ(s, t)ds = q(a, t)− q(b, t).

The conservation law on [a, x] where a is constant and x is an independent variable∫ x

a

∂ρ

∂t
(s, t)ds = q(a, t)− q(b, t).

Replace b by x as the position can be anywhere on the road and differentiating wrt x

∂ρ

∂t
= −

∂q

∂x
= 0, −∞ < x <∞, t > 0.

(The integrand is a continuous function of x, and since the above holds for all
intervals in D then the integrand must vanish identically, the argument based on the
the large box method)

ρt + qx = 0.
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A linear conservation law II

I This is the differential form of the conservation law

I Physically, the density changes over time at a fixed point,
whilst the flow at a fixed time depends on the location

I The number of vehicles in the region [a, b] is not constant. If

that were true, q(a, t) = q(b, t) or d
dt

∫ b
a ρ(x , t)dx would be 0

and this is not the case.

I Until now, the equation is linear and depends on only two
variables, the position x and the time t.

I The initial condition defines a function of the traffic density at
time 0 with a function ρ0(x), as we will see later.

I The conservation equation assumes that ρ and q are
continuous, however when they are not, another class of
solutions may be found known as weak solutions.
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Traveling waves

Fundamental mathematical representation of a wave is

ρ(x , t) = f (x − ct)

f is the function of a single variable and c is nonzero constant. If c
is positive then the profile of the ρ(x , t) moves in the positive x
direction at speed c .

The profile does not change and is known as a traveling wave.
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The method of characteristics
A characteristic is a curve in spacetime along which density propagates.

ρt + cqx = 0, ρ(x , 0) = u0(x), −∞ < x <∞, t > 0 (1)

Using the constitutive relation qx = cρx (x , t) along a chosen line x = x(t) in the xt
plane starting from (x0, 0) the rate of change of ρ(x(t), t) wrt t

d

dt
ρ(x(t), t) = ρt(x(t), t)

dt

dt
+ ρx (x(t), t)

dx

dt

dρ

dt
= ρt +

dx

dt
ρx (2)

Comparing equations 1 and 2 then dx
dt

equals the constant c and importantly dρ
dt

= 0
along the line x(t)

dρ

dt
= ρt + cρx = 0 (3)

The change in density is 0 along x(t) and by integrating with respect to t, ρ will be a
constant. The lines of constant density are called characteristics.

dx

dt
= c

then by integrating again we obtain

x = x0 + ct or x0 = x − ct

which is the solution to the traveling wave form from the previous slide

ρ(x , 0) = ρ0(x), ρ(x , t) = f (x − ct).
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Characteristics illustration
I The right hand plot illustrates a “specially” selected curve in the xt plane in

which the density remains constant.
I implies the density along this curve is the same and can be found from the

initial condition ρ0(x0).
I In the traffic flow literature the gradient of the characteristics is referred to as

their “speed”.
I Their gradient is 1

c
for positive gradients and − 1

c
for negative cases.

I The gradient is the reciprocal as we using t versus x rather than x versus t.

x

t

(x0, 0)

(x(t), 0)

x

t
(x, t)

p = p(x − ct)

x0 = x − ct

I Given the fact that ρ is constant along the lines x = ct + xo we can construct
the density at any time

I Alternative thinking: The density is constant, seen by an observer moving in a
particular path and speed

I An example is next
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Example

As an example consider the following conservation (advection) law:

ρt + 4ρx = 0, −∞ < x <∞, t > 0

With wave profile, i.e. the initial conditions

ρ(x , 0) = arctan(x)

Picking x(t) to satisfy:

c =
dx

dt
= 4, x(0) = x0

so ρ(x(t), t) has a constant value along x = 4t + x0. At any point (x , t) the
characteristic line through this point extends back to (x0, 0) on the x-axis where
x0 = x − 4t. Since ρ is constant along this characteristic, the value of ρ at (x , t) is:

ρ(x , t) = ρ(x0, 0) = arctan(x0) = arctan(x − 4t)

The solution of the initial value problem is a traveling wave with profile arctan(x)

moving with velocity 4.
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Traffic flow realities
In practice the velocity of a vehicle is a function of the number of
cars around it i.e. u = u(ρ). It has been shown empirically that the
velocity decreases monotonically with increasing density (left)

0 100 200 300 400 500
0

50

100

150

vehicle density

V
e

lo
ci

ty
 (

k
m

/h
o

u
r)

0 100 200 300 400 500
0

5000

10000

15000

fl
o

w
 (

ca
rs

 p
e

r 
h

o
u

r)

vehicle density
0 200 400 600

-150

-100

-50

0

50

100

150

vehicle density (p)

d
q

/d
p

The flow is will also become a function of the density, a form that
is typically used is

q(ρ) = ρ(1− ρ).

When the density is at a minimum (ρ = ρmin = 0) the flow is zero
q(ρ) = 0, no vehicles for a flow, density a maximum (ρ = ρmax)
again no flow q(ρ) = 0, because cars are stacked bumper to
bumper (middle).
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Non-linear characteristics
We can now introduce the fact the flow (and velocity) depend on the density.

∂ρ

∂t
+

∂

∂x
(q(ρ)) = 0 (4)

then by the chain rule:
∂q

∂x
=

dq

dρ

∂ρ

∂x
(5)

The conservation law now becomes

∂ρ

∂t
+ q′(ρ)

∂ρ

∂x
= 0 (6)

∂ρ

∂t
+ c(ρ)

∂ρ

∂x
= 0 (7)

We have a form as in the non-linear case, but with dependence on ρ But whatever the
characteristic ends up being, its value will still be constant along the curve (x(t), t)

ρt + c(ρ)ρx = 0, ρ(x , 0) = u0(x), −∞ < x <∞, t > 0

The characteristic starting at (x0, 0) is found by solving

dx

dt
= c(ρ(x , t)), x(0) = x0.

d

dt
ρ(x(t), t) = ρt(x(t), t) + ρx (x(t), t)

dx

dt

= ρt(x(t), t) + c(ρ(x(t), t))ρx (x(t), t) = 0

The value of ρ along a characteristic is still constant. 17/1



Non-linear characteristics
Since the ρ(x , t) has the constant value ρ0(x0) along the
characteristic starting at (x0, 0) the initial value problem

dx

dt
= c(ρ0(x0)), x(0) = x0

can be solved

x = c(ρ0(x0))t + x0

the characteristics are are lines, but they are not parallel since the
gradient depends on the value of ρ at the initial point.

x

t

p(x0, 0) = u1

Gradient  1/c(p2)Gradient  1/c(p1)

p(x0, 0) = u2
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Shockwaves
I Shock waves can be seen as abrupt density changes
I Effects are dramatic e.g. explosions but we still need to be

able to handle them in this work
I Where differing densities exist at places along a road the

characteristics may become multivalued
I The relative differences in the density determine how fast

shock waves form
I The method of characteristics can construct a solution but

only up to the point where the function becomes multi-valued

x

t
(x(t), t)

(x(0), 0)

R−

R+
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Density ahead and behind
I It can be shown that the velocity of the shockwaves is always

less than the mean speed of the vehicles themselves.

c =
dq

dρ
=

d

dρ
(ρu) = u + ρ

du

dρ

c < u only if
du

dρ
≤ 0 (8)

I Means that drivers always react to changes in density ahead
of their current position and not behind.

I Vehicles in a congested region have large densities in their
vicinity and consequently must move slowly.

I Vehicles behind travel faster until they move into a higher
density region and must slow down once reaching it.

I Hence shocks (multi valued functions) develop
I An example of velocity of vehicles and density waves next
I http://www.youtube.com/watch?v=Suugn-p5C1M.
I (Note the cars move at 30km and the shockwave at 20km)
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Integral form of conservation law

Has the form

d

dt

∫ b

a
ρ(s, t)ds = q(a, t)− q(b, t).

if ρ and q are assumed to have continuous first derivatives then
the form above can be written as∫ b

a
ρt(x , t)dt = −

∫ b

a
qx(x , t)dt

∫ b

a
(ρt(x , t)dt + qx(x , t))dx = 0

This form is more applicable when the density and flux are not
smooth functions (continuously differentiable)
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A general numerical technique

I We need a general technique to solve the conservation
hyperbolic equations presented thus far.

I We need to consider the integral conservation law when
constructing numerical solutions

I The reason being that solutions to the differential form may
not be found at all points (partial derivatives don’t exist)

I This happens physically when the traffic flow develops shocks

I The integral conservation law can be written as

∫ b

a
ρ(x , t2)dx =

∫ b

a
ρ(x , t1)dx −

∫ t2

t1

f (ρ(b, t))dt +

∫ t2

t1

f (ρ(a, t))dt
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A simple numerical algorithm

Partial derivatives are limits of difference quotients, so forward (9) and backward (10)
approximations can be calculated

∂ρ

∂t
≈
ρ(x , t + k)− ρ(x , t)

k
,
∂ρ

∂x
≈
ρ(x + h, t)− ρ(x , t)

h
(9)

∂ρ

∂t
≈
ρ(x , t)− ρ(x , t − k)

k
,
∂ρ

∂x
≈
ρ(x , t)− ρ(x , t − h)

h
(10)

resulting in

ρ(x , t + k) = (1−
ck

h
)ρ(x , t) +

ck

h
ρ(x − h, t).

I ck
h

is called the Courant-Friendrichs-Levy (CFL) condition and is important for
stability and convergence in many types of numerical hyperbolic PDEs
algorithms

I Since density propagates along characteristics, one important aspect is
numerical stability and convergence of the numerical solution.
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Godunov’s algorithm

I Godunov’s method is a numerical algorithm for solving PDEs.

I x and t values separated by h and k use a grid

I Well suited to boundary conditions, both in the mathematical and traffic senses!

I The integral form is used rather than the differential one for numerical stability
(partial derivates may not exist).

I Define a spatial grid in with a mesh size of 4x . This has relevance for us, as we
need a fixed distance to calculate the density changes.

I A function v defined on the grid

v j
m = v(tj , xm) j ∈ Z and m ∈ N

and at every time step (4t, vj ) is calculated

v j+1
m = v j

m −
4t

4x
(Qj−1/2 − Qj+1/2),

I Qj+1/2 is the approximation to the flow Q(x +4x/2) averaged over the time
interval (t, t +4t).

I Interacting waves from adjacent cells use a limited time interval 4t.
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Traffic flow parameters

I Length of an average family saloon 4m

I We will consider the traffic at the start of a 2km road.

I We specify the maximum density pmax of 500 (2000 / 4)

I Maximum velocity 120 km/hr

I The time dimension is usually determined via the fundamental
traffic law, by obtaining a maximum velocity (hence minimum
time)

I The size of the cells in terms of distance was selected at 20m

I Matches Bluetooth’s coverage and is x5 average car length
I Tests conducted

I Scenario 1: Backlogged cars behind a red traffic light
I Scenario 2: More or less constant traffic along a highway
I Scenario 3: Low to high density moving traffic
I Scenario 4: Measured traffic (underway)
I Use low, medium and high densities relative to ρmax
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Modeling the initial (random) conditions

I Intercar spacing needs to be captured: uniform, exponential...

I Use uniform distribution to generate other distributions

I To generate other distributions the CDF should be invertible

I For the exponential:

xi =
1

p
log(ui ) AND x̃i =

1

p
log(ũi )

Where p is the mean of the distribution.

Antithetic technique

I The problem is variations in RVs are too large

I One method is to use antithetic variates
I Generate a pair of random variables with negative covariance

I Difference between covariance and correlation?

I The key idea is to exploit Cov [u, ũ] < 0 in Var(X + Y )

I By using U and 1− U, the samples are not IID any longer

I Variance reduction depends on i , however 1/50 is achievable
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Density evolution examples
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I Initial densities at t = 0 and their evolution at t = 5
I Note small variance in uniform case
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Sexier plot
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Part II: Vehicular communication
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VANET communications
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Communications I
I The main goal is to predict the connectivity of VANETs
I Under common traffic situations.
I Coverage, not range is what is needed (broadcast)
I Some radio details

Typical Coverage Transmit Transmit Transmitter and receiver
Technology Subclass range in in meters power in dBm power in mW antenna gains in dBi

meters (d) (Pt ) (Gt , Gr )
Bluetooth Class 1 10 20 4 2.5 3
802.11a Outdoor 120 240 27 500 5
802.11p - 1000 2000 33 2000 5

We want to include the radio connectivity as functions of the density, thus begin with
the received power. It is related to the distance between vehicles and is typically given
by the equation

Pr (dB) = −10log10

[
PtGtGrλ2

(4π)2(d + L)γ

]
Pt is the transmission power Gt is the gain of the transmitter, Gr the gain of the
receiver, λ the wavelength of the carrier and importantly d the distance between
transmitter and receiver. γ is known as the path loss exponent. A value of two is
often chosen for line of sight (LOS) cases between the sender and receiver. In this
case of NLOS where vehicles attenuate a broadcast signal, causings a reduction in the
coverage. Other works have suggested using values of γ in the range (2.5, 4.8) taken
from empirical measurements. L is the length of the vehicle. The antenna is in the
middle. 31/1
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Information propagation

Divide the application of traffic theory into four distinct phases

1. The level of connectivity is defined as the relative time
during which adjacent cells are connected.

2. Reachability defined as the probability that every two vehicles
in the network are connected (clearly coverage dependent)

3. Broadcast capacity, defined as the maximum number of
successful concurrent transmissions over the road.

33/1



Connectivity, reachability and capacity algorithms

I Process a 2-dimensional density matrix in space time.

I Cell “distance” dimension length ÷ coverage size.

I Cell “time” depends on the road length, the umax and ρmax

I Maximum density is a function of the vehicle length (4m)

I Example for all the vehicles to pass the 2km stretch with our
settings of pmax and umax we would have approximately 600
time columns.

I A typical run time of 50s will produce 600,000 density values

I In a range a (100, 600) matrix.

I Process the matrix in columns, for each time step 4ti .

I dcov () is the cell coverage and P(r , c) as dimensions
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Algorithm

1. Normalize P wrt to the maximum density, P̄ = P
ρmax

2. Obtain the no. of vehicles per cell, Ni = P̄ · dcov ()
L

3. Find nearest whole no. of vehicles, P̃=round(Ni )

4. For each 4t

4.1 For active cells (> 1)
4.2 Do
4.3 if (all cells are active) then whole network is active at time 4ti .
4.4 else Repeat for all time steps
4.5 sum to find connected probability.

Notes:
Active cells > 1 network is partially connected
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Results

Stop Duration Bluetooth 802.11a Traffic Proportion to Bluetooth 802.11a
time (seconds) coverage coverage flow to ρmax coverage coverage
Short 30 3% 24% Light 0.2 4% 26%
Med. 60 6% 32% Medium 0.5 17% 39%
Long 120 12% 45% Heavy 0.8 56% 74%

V2V connectivity for traffic behind traffic light and constant initial conditions (right)

Stop Duration Bluetooth 802.11a Traffic Proportion to Bluetooth 802.11a
time (seconds) reach. reach. flow to ρmax reach. reach.
Short 30 1% 24% Light 0.2 0% 25%
Medium 60 2% 32% Medium 0.5 33% 37%
Long 120 10% 45% Heavy 0.8 70% 73%

V2V reachabilty for step (left) and constant initial conditions (right)

Stop Duration Bluetooth 802.11a Traffic Proportion to Bluetooth 802.11a
time (seconds) broadcast broadcast flow to ρmax broadcast broadcast
Short 30 0.8% 4% Light 0.2 1% 15%
Medium 60 1.2% 12% Medium 0.5 2.5% 27%
Long 120 2% 15% Heavy 0.8 4% 33%

V2V broadcast capacity for step (left) and constant initial conditions (right)
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Time to reflect...

I The opposite problem of sparse connectivity from a
networking perspective is attenuation from overly dense traffic

I A more involved approach method would be to utilize the
local density conditions we derive to estimate the current
attenuation.

I Actually what we need to do is a cluster analysis on the
density wrt to spacetime

I Due to shocks, traffic impediments, human behaviour, etc.
the density can change rapidly

I Communications are adaptable, but hints help
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Cluster analysis: dendogram
Is a tree-like representation to show the arrangement of the
clusters, hierarchically. Along the x-axis is the leaf nodes and the
y -axis is the distance metric between nodes.
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Cluster analysis: linkage
I Nearest neighbour (relay)
I Furtheest neighbour (coverage)
I Average neighour
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Part III: Extras
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Conclusions

I Focus on the application of traffic flow theory to VANET

I Different approach to microscopic modeling (plenty)

I Broader goal is to ascertain coverage model

I In some way use the “real physical level” to communications
applications, i.e. drivers can influence communications

I Need to estimate/measure/model of the initial densities

I Boundary conditions not not covered in this work

I High density due to vehicle shadowing and low density
intermittent connectivity

I What is the optimal density (hence spacing) connectivity?
I Derivation of the density can be complex

I But makes connectivity analysis much easier
I Density ⇔ Separation ⇔ Coverage ⇔ Connectivity
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Further work
Maths:

I Glossed over the continuity needs of the traffic variables

I Weak solutions using test functions

I Cluster analysis using distance metrics (VSM?)

I Numerical accuracy?

Vehicular:

I Mixed traffic (bus, trucks)

I Extended to roundabouts, intersections (need to add probablistic aspects)

I Non homogenous cases, traffic leaves and enters a road

∂ρ

∂t
+

dq

dρ

∂ρ

∂x
= β (11)

I Multilane traffic systems systems of non-linear PDEs.

Communications:

I Mixed traffic and radio work (but underway)

I Mate and co. making real measurements

I Optimize power/rate depending on inter-vehicle distances

I Integration with ns-3 (started)

Analysis

I Cluster formation needs more
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Related work
I The history of traffic flow lies with fluid dynamicists. Whitam’s 1956 publication

“Shock waves in the highway” plus his work with Lighthill “On kinematic
waves” [Whi56, LW55] showed that shockwaves can be produced in a similar
way in traffic flows as in gas and water flows.

I It was later shown that traffic jams displays sharp discontinuities, whereby a
correspondence exists with shock waves [Pet72].

I The means were take from road traffic surveys [HBF61].

I In the field of mobile ad-hoc networking Gupta and Kumar present for statically
identical randomly located nodes, the throughput obtainable for a
source-destination (S-D) pair for a randomly chosen position is O( 1√

n
) [GK00].

Grossglauser and Tse extended this work by including independent node
mobility, the average long term throughput per S-D pair can be kept constant
as the number of nodes per unit area n increases, i.e. O(n) [GT02]. Pishro-Nik
et. al provide a general framework to study the fundamental capacity limits of
VANETs and show that (indeed) road geometry affects the capacity and
connectivity of VANETs and are Θ( 1

n
) for a single road and Θ( 1√

n ln(n)
) for a

grid-like road structure for a S-D pair [Hos07].

I For a detailed analysis on vehicle clustering and connectivity consult [KPD+08].

I Object shadowing exists where vehicles obstruct the path from sender to
receiver. interference from overly dense traffic [BVF+10, OBB09].
Experimentally the latter has shown path loss exponents of between 3.3 and
4.8dB at rush hours and exponents of 3.1 and 3.2dB at low traffic periods.

43/1



Bibliography
M. Boban, T. T. V. Vinhoza, M. Ferreira, J. Barros, and O. K. Tonguz.

Impact of vehicles as obstacles in vehicular ad hoc networks.
JSAC issue on Vehicular Communications and Networks, 2010.

P. Gupta and P. R. Kumar.

The capacity of wireless networks.
IEEE Transactions on Information Theory, pages 388–404, 2000.

Matthias Grossglauser and David N. C. Tse.

Mobility increases the capacity of ad hoc wireless networks.
IEEE/ACM Trans. Netw., 10(4):477–486, 2002.

Whisler Haight, F A and W W B F, MOSHER.

New statistical method for describing highway distribution of cars, 1961.

Hossein Pishro-Nik, Aura Ganz, and Daiheng Ni.

The capacity of vehicular ad hoc networks.
In Forty-Fifth Annual Allerton Conference, Allerton House, UIUC, Illinois, USA, September 2007.

M. Kafsi, P. Papadimitratos, O. Dousse, T. Alpcan, and J.-P. Hubaux.

VANET Connectivity Analysis.
In Proceedings of the IEEE Workshop on Automotive Networking and Applications (Autonet), New Orleans,
LA, USA, December 2008.

M.J. Lighthill and F.B. Whitham.

On kinetic waves II: a theory of traffic flow on crowded roads.
Proceedings of Royal Society Series A, 229(1178):317–345, May 1955.

John S. Otto, Fabian E. Bustamante, and Randall A. Berry.

Down the block and around the corner – the impact of radio propagation on inter-vehicle wireless
communication.
In Proc. of IEEE ICDCS, 2009.

Peter D. Lax.

The Formation and Decay of Shock Waves.
The American Mathematical Monthly, pages 227–241, March 1972.

G.B. Whitham.

Shock waves on the highway.
Operations research, 4:42–51, 1956.

44/1



Guess the location...

huge-highway-full-of-cars.jpg
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PDEs

Fundamential theory of calculus

∫ b

a
qx (x , t) = q(b, t)− q(a, t)

Differentiating an integral

d

dt

∫ b

a
ρ(x , t) =

∫ b

a
ρt(x , t)dx

Large box method

Small box method
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