
The responsiveness and deployment of
WebAssembly runtimes in Cyber-Physical Systems

Ian Marsh
RISE, Research Institutes of Sweden, AB

ian.marsh@ri.se

Remo Scolati
KTH, Sweden
scolati@kth.se

Abstract—Edge computing is being deployed to satisfy the
low-delay requirements of cyber-physical systems (CPS). The
network edge consists of heterogeneous and frequently resource-
constrained hardware sometimes operating under real-time con-
straints. Furthermore, the need to develop, support & fix code
on different platforms is important when operating CPSs that
run tasks continuously (e.g. welding), whence initiated.

WebAssembly, extracted from browser world, has been stan-
dardised, and in some cases, edge-enhanced. WASM generated
code from high-level languages can run on several compute
architectures. Therefore, a ”write once, run everywhere” solution
fits CPS perfectly.

We consider the time-critical application of robotics and show
that WASM is between 1.2 and 1.5 times slower than natively-
compiled binaries. From a 100ms E2E latency requirement,
extracted from a commonly used polling interval, we also show
where a robotics application fulfils (or not) this requirement in
cloud-edge deployment cases.

I. INTRODUCTION

Several high-level languages can be compiled to We-
bAssembly bytecode: C++, Go, Python, and Rust, amongst
others [2]. WebAssembly, also known as WASM, was initially
developed to provide a lightweight and performant compilation
target for Web-based applications [7]. We postulate it fulfils
most needs for CPS systems, namely, responsiveness, portabil-
ity, and openness. The research question this paper addresses
is what performance penalty WASM introduces. Therefore, as
an example of WebAssembly in-situ, consider figure 1, where
a robotics application has been introduced as part of a cloud-
edge platform for industrial manufacturing.

Hockley and Williamson explored the use of wasmer, a
WASM runtime, as a sandboxed environment for general-
purpose runtime scripting [8]. They focused on micro-
benchmarking and one macro-benchmark to compare execu-
tion times of JiT WASM & native execution(s). They state a
×5–10 performance penalty for WASM in this case, note, JiT
= Just in time compilation. Jangda et. al measured WASM’s
performance and implemented a framework for emulating the
UNIX kernel in browsers1 for evaluation. They compared
WASM to native code [9]. They found a ×1.45–1.55 slowdown
compared to native binaries using the SPEC CPU benchmark
suite. This correlates quite closely to our findings, even
more closely when one considers the performance increase
of modern runtimes. Yan et. al found that JiT optimisations

1Browsix-Wasm.

1. Data centre 3. Network edge 4. On-prem ctrl.2. Core network 5. Robotics
(External 
view)

a. Edge server

Data 
broker

b. Compute & comms

Data 
manipulation Comms.

c. Cell

Robot
Tool

PLC

5. Robotics
(Internal view)

Fig. 1. A networked factory with a robotics application. Dark blue blocks
represent network operations, whilst orange blocks represent robotics. Red-
green-blue prompt-like boxes indicate deployment locations for WASM and
green possible edge locations. Note the internals of an industrial robot (5).

were mostly ineffective for WebAssembly, obscured across JS
implementations (e.g V8 in Chrome) & the OS-hardware [13].
Note this is not the same as AoT (Ahead of Time compilation).
The same authors found a significant memory overhead for
WASM applications when compared to Javascript. Napieralla
in 2020 compared WebAssembly and Docker for deployment
on constrained IoT devices in terms of capabilities and per-
formance [10]. The work uses a number of benchmarks to
compare the performance of the Wasmer runtime with both
native execution and Docker containers as alternative(s). They
state WASM compiled binaries take twice as long to complete
tasks compared to native binaries, however the startup time
for a WASM runtime is 10% of a Docker application. Given
WASM is faster than Docker is no surprise, but that it is ×10
faster is significant, especially where startup speed is needed.

II. A ROBOTICS APPLICATION: WELDING

In this work, we consider the application of a robotic arm
connected to the Edge-Cloud. The arm’s task is to weld a metal
segment, a common off-the-shelf industrial task. The move-
ments of the robot arm are controlled by known algorithms,
one which calculates the position of the arms, or one which
calculates the angles between the arms, or joints, to move the
robot’s ’fingers’ to a desired location. As with human limbs,
there are several different movements that can get to the same
location. Additionally, there are points we cannot reach, for



example touching one’s elbow for a moving arm. Reachable
or not, calculating these movements, forward (arms) or reverse
(joints) kinematics form our workload.

In practice, an application loads the robot cell and validates
the program using a known checksum and the architectures
and code match. Then a two-step process follows i) calculate
the motion path, the target locations, the robot speed &
acceleration, dependent on the robot’s features. A key factor
in kinematics is how many arms & joints the robot arm
has, called the Degrees of Freedom (DoF). ii) using the
angle-orientated inverse kinematics (IK) to establish how the
joints should move. The IK per millimeter, positions, speeds
& accelerations using the programmed & robot mechanical
constraints are then uploaded and run [11]. The task is usually
repeated many thousands of times.

An interchange format for robot control is called the Unified
Robotics Description Format (URDF), part of the Robot
Operating System (ROS). It is ubiquitous in this field and used
almost universally. From a programming point of view a Rust
application2 was used to read the specification, calculate the
inverse kinematics, and instruct the (software) arm to move.

Task → URDF → Rust → wasm → IK → workload → timings.

III. WEBASSEMBLY

A. The WASM ecosystem

The top five WebAssembly applications are web develop-
ment, serverless, containerisation, plugins and IoT [6]. Nearly
all are relevant to a CPS deployment [12]. A WASM module
contains the application code as well as a specification on
how much memory the code needs, type declarations, and
externally callable functions in the module. A WASM runtime
is a bytecode interpreter that executes the WebAssembly code.
WASM runtimes execute modules in a secure sandbox without
access to system services and networking.

CPS application = Robot application + a WASM runtime.

B. The WebAssembly System Interface (WASI)

WebAssembly lacks networking in the core specification.
WASI provides a mechanism to communicate using system
calls & sockets. The programming interface breaks out of the
WASM sandbox and accesses host system resources, sockets
and the file system [3], [4]. It is done by an Application Binary
Interface (ABI) plus an Application Programming Interface
(API) and uses WASM to call POSIX-compliant kernel system
calls in a platform independent way via a foreign function
interface (FFI).

2https://docs.rs/k/latest/k/

C. Three runtimes: Wasm3, wasmer, & wasmtime

Of the 20 active frameworks listed on Github [1], we se-
lected just three, shown in Table I. i) wasmtime is supported
by the Bytecode Alliance, and is the most widely used general
purpose runtime, focusing on standards and stability whilst
also offering good JiT performance, using the Cranelift JiT
from Lucet [6]. ii) Wasmer is a standalone WebAssembly
runtime for running WebAssembly outside of the browser,
supporting WASI and Emscripten. It can also utilise either
Singlepass’s or llvm, two distinct compilers. iii) Wasm3
advertises itself as the fastest WebAssembly interpreter, and
the most universal runtime3, and thus sacrifices performance
in favour of portability and startup times. It is under the Cloud
Native Computing Forum (CNCF) initiative.

WASM Vers. Lang. Frame- JiT AoT Sys.
runtime support work Int.
Wasm3 0.5.0 C - N N -
Wasmer 3.1.1 C++,G,R,P C / L Y Y WASI
Wasmtime 6.0.0 C, C++, R C Y Y WASI

TABLE I
SELECTED WASM RUNTIME & FEATURES [1]. C, C#, C++, RUST,

PYTHON AND GO ARE INDICATED. PROP=PROPRIETARY. FRAMEWORKS
C=CRANELIFT AND L=LLVM TOOLCHAIN. JIT=JUST IN TIME

COMPILATION, AOT=AHEAD OF TIME COMPILATION.

IV. RESULTS

Before we present the results, one clarification is that we
used two different robot types. Labelled as ’arm’ and ’torso’
below the robots differ slightly in their Degrees of Freedom
(DoF) and movement constraints. As mentioned before, the
DoF and constraints makes calculating the kinematics differ,
a little, but not significantly.

A. Local benchmarks

Figure 2 shows the (average) execution times, grouped by
workload and placement, relative to the native implementa-
tions. We can see that the Wasm measurements are within
×1.9–×2.2 the times recorded for the native tasks.

The results measured for a local deployment are consistent
with the performance ratio of Wasm to native execution times
found in similar studies, namely [5], [10]. The gap between
our results and those shown by [8], who found a ×5–10
difference, are most likely due to implementation choices since
the measured tasks in our project do not require any interaction
with resources outside the runtimes’ environment.

B. Networked benchmarks

The end-to-end response times, for the chosen implementa-
tions, running on the far edge are shown in Figure 3. The box
plots show a box extending from the first to the third quartile
of the data, with a line at the median and a green point at the
mean. The whiskers extend within ×1.5 the inter-quartile range
from the box, while outliers beyond that range are plotted as
individual points.

3https://github.com/wasm3/wasm3

https://docs.rs/k/latest/k/


Fig. 2. Local benchmarks, mean Wasm execution times for robotics work-
loads, relative to mean native execution times.

Fig. 3. End-to-end benchmarks, robotics workloads on the far edge device.

Figure 4 shows the (average) response times, grouped by
workload and placement, relative to the native response times.
As a general trend, we can see that the overall performance
overhead introduced by Wasm gets increasingly negligible
with growing device performance and network overhead.

Fig. 4. End-to-end benchmarks, mean Wasm response times for robotics
workloads, relative to mean native response times.

C. Just in Time (JiT) & Ahead of Time (AoT) compilation

Figure 5 shows some of the results measured during pre-
liminary tests using non-embedded Wasm artefacts on the far
edge device. The results are recorded using the Wasm runtimes
to execute several test cases as standalone applications. The
results include the execution time for two applications per-
forming a robotics task i) compiled and executed as a native
binary, ii) compiled as a Wasm application and executed in
the Wasm3 interpreter and both the Wasmer and Wasmtime
runtime in JiT compiled mode, and iii) pre-compiled using the
Wasmer and Wasmtime CLI tools to compile and execute the
applications in AoT compiled mode. The measured execution
times for both robot applications executed in native and AoT-
compiled mode are below 100ms, with a significant difference
between Wasm and native performance, especially for the
Wasmer runtime. The measured execution times for both robot
samples executed with Wasm3 are, on average, around ×20
longer than the native applications, in both cases exceeding
the selected upper response time limit.

The significantly worse JiT performance is most likely
due to the complexity of the (non-optimised) Wasm artefacts,
which impacts the code analysis and generation. Both Wasm
runtimes perform almost ×10 worse in terms of execution time
when comparing the JIT execution of an empty application
that includes the robotics dependencies with an identical
application without any dependencies.

Fig. 5. Standalone benchmarks, selected execution times for robotics.

D. A 100ms requirement

Figure 6 shows a 100ms deadline with respect to our
network, WASM and ’other’ delays. The times needed for this
URDF move on a Raspberry Pi4 in wasmtime were 114 ± 4
ms. This is compared to 77ms ± 2 ms in native mode, some
×1.4 slower. As of 2023, Single Board Computers are some
50% faster4 faster than those of 2019. That is the case for the
popular Raspberry Pi 4 and upcoming Pi5.

4https://www.elektormagazine.com/news/raspberry-pi-5-vs-raspberry-pi-4-comparison

https://www.elektormagazine.com/news/raspberry-pi-5-vs-raspberry-pi-4-comparison


Native Binary
Rust (llvm)

WASM
AoT (Cranelift)

0

20

40

60

80

100

120

140

La
te

nc
y 

(m
s)

Compiler and WASM runtimes compared & a 100ms deadline

WASM
Network
Extras

Fig. 6. Total E2E application delays. Blue: the wasmtime runtime + IK
workload. Orange: non-wasm and non-network delays (e.g. system calls).
Green: Cloud-to-Device network measurements, determined by mtr. A 100ms
requirement given by robotics polling intervals, the horizontal black line.

V. DISCUSSION

The discussion around being able to place apps anywhere
is, can one improve the performance of the entire system?
However, it is pertinent to add performant software that can
only run on the (robot) edge on relatively low-powered hard-
ware might be easily balanced out by using a slower task in
the cloud. Where the bottleneck resides is a consideration, e.g.
processing large amounts of data which can come from various
places then having the app running next to the data source
could easily outweigh the performance penalty. Performance-
wise a WASM slowdown is not optimal however when it
represents a slowdown. We are looking at these issues too.

VI. CONCLUSIONS

We have microbenchmarked three wasm runtimes as of
Nov. 2023 in this paper. We have considered a robot arm
application as a use case, and in particular, the time needed
to weld a metal segment autonomously. Moving a robot arm
correctly and efficiently requires some calculations, as we
have indicated using kinematics. The calculation of the arm’s
position represents a real workload. We have considered a
couple of robot types, which differ in DoFs & movements,
but this requires more work.

We have also considered placement of the application and
runtimes, as in Cloud-Edge networking movement & place-
ment is often touted as an advantage in a telecommunications
network. This is one reason for choosing WebAssembly since
it can run on many CPUs, operating systems and hard-
ware, as stated ”write once, run everywhere”. We have tested
WebAssembly in a standalone local environment and in a
networked setting with realistic end-to-end delays. We have
used a simple benchmark to see if a wasm-enabled application
would violate a 100ms requirement.

We concur with the related work, that WebAssembly does
incur some performance penalty, about ×1.2-1.5 slower than
a native binary. However, in a networked setting, this is
subsumed by the E2E delays. Looking over a number of
versions of the runtimes, the performance difference between
wasm and the native binaries is closing. This is very much
due to compiler improvements and the wasm virtual machine
being improved. This compares to the Java world, where the
JVM executes at the speed of a native binary today.

Given our results, we show that the overhead introduced
by Wasm is not prohibitive for the selected application and
that the overall delay of the Wasm implementation is usually
within latency requirements. Thus, we conclude that Wasm
could benefit and enable several use cases due to its secure
architecture, performance, flexibility, and portability.

ACKNOWLEDGEMENTS

We acknowledge the CELTIC office with project ID
C2019/3-2 in Germany and Vinnova AB-Sweden, under
project name Automation of Network edge Infrastructure &
Applications with aRtificiAl intelligence, ID 2020-00763.

REFERENCES

[1] S. Akinyemi, “Awesome webassembly runtimes,” May 2022. [Online].
Available: https://github.com/appcypher/awesome-wasm-runtimes

[2] Appcypher, “Awesome webassembly languages,” Oct. 2022. [Online].
Available: https://github.com/appcypher/awesome-wasm-langs

[3] W. Authors, “Wasi: The webassembly system interface,” Oct. 2022.
[Online]. Available: https://wasi.dev

[4] L. Clark, “Standardizing wasi: A system interface to run webassembly
outside the web,” Mar. 2019. [Online]. Available: https://hacks.mozilla.
org/2019/03/standardizing-wasi-a-webassembly-system-interface/

[5] F. Denis. Performance of WebAssembly runtimes in 2023. [Online].
Available: https://00f.net/2023/01/04/webassembly-benchmark-2023/

[6] C. Eberhardt, “The state of webassembly,” 2022. [Online]. Available:
https://blog.scottlogic.com/2022/06/20/state-of-wasm-2022.html

[7] A. e. a. Haas, “Bringing the web up to speed with webassembly,” in
Proceedings of the 38th ACM SIGPLAN Conference on Programming
Language Design and Implementation, ser. PLDI 2017. New
York, NY, USA: ACM, 2017, p. 185–200. [Online]. Available:
https://doi.org/10.1145/3062341.3062363

[8] D. Hockley and C. Williamson, “Benchmarking runtime scripting
performance in wasmer,” in ICPE, ser. ICPE ’22. Association
for Computing Machinery, 2022, pp. 97–104. [Online]. Available:
https://doi.org/10.1145/3491204.3527477

[9] A. Jangda, B. Powers, A. Guha, and E. D. Berger, “Mind
the gap: Analyzing the performance of webassembly vs. native
code,” CoRR, vol. abs/1901.09056, 2019. [Online]. Available: http:
//arxiv.org/abs/1901.09056

[10] J. Napieralla, “Considering webassembly containers for edge
computing on hardware-constrained iot devices,” Master’s thesis,
Faculty of Computing, Blekinge Inst. of Tech., Karlskrona, Swe,
2020. [Online]. Available: http://bth.diva-portal.org/smash/record.jsf?
pid=diva2:1451494

[11] L.-C. Wang and C. Chen, “A combined optimization method for solving
the inverse kinematics problems of mechanical manipulators,” IEEE
Trans. Robotics and Automation, vol. 7, no. 4, pp. 489–499, 1991.

[12] G. Wikström et al., “6g – connecting a cyber-physical world: A research
outlook towards 2030,” Ericsson, White paper, Nov, 2022.

[13] Y. Yan, T. Tu, L. Zhao, Y. Zhou, and W. Wang, “Understanding the
performance of webassembly applications,” in Proceedings of the 21st
ACM Internet Measurement Conference, ser. IMC ’21. New York,
NY, USA: Association for Computing Machinery, 2021, p. 533–549.
[Online]. Available: https://doi.org/10.1145/3487552.3487827

https://github.com/appcypher/awesome-wasm-runtimes
https://github.com/appcypher/awesome-wasm-langs
https://wasi.dev
https://hacks.mozilla.org/2019/03/standardizing-wasi-a-webassembly-system-interface/
https://hacks.mozilla.org/2019/03/standardizing-wasi-a-webassembly-system-interface/
https://00f.net/2023/01/04/webassembly-benchmark-2023/
https://blog.scottlogic.com/2022/06/20/state-of-wasm-2022.html
https://doi.org/10.1145/3062341.3062363
https://doi.org/10.1145/3491204.3527477
http://arxiv.org/abs/1901.09056
http://arxiv.org/abs/1901.09056
http://bth.diva-portal.org/smash/record.jsf?pid=diva2:1451494
http://bth.diva-portal.org/smash/record.jsf?pid=diva2:1451494
https://doi.org/10.1145/3487552.3487827

	Introduction
	A robotics application: welding
	Webassembly
	The WASM ecosystem
	The WebAssembly System Interface (WASI)
	Three runtimes: Wasm3, wasmer, & wasmtime

	Results
	Local benchmarks
	Networked benchmarks
	Just in Time (JiT) & Ahead of Time (AoT) compilation
	A 100ms requirement

	Discussion
	Conclusions
	References

